Journal of Thermal Analysis and Calorimetry

, Volume 63, Issue 2, pp 577–588 | Cite as

Interpretation of the Metabolic Enthalpy Change, ΔHmet, Calculated for Microbial Growth Reactions in Soils

  • N. Barros
  • S. Feijóo
  • A. Simoni
  • S. A. M. Critter
  • C. Airoldi


The microcalorimetric method was used to calculate the metabolic enthalpy change per mol of glucose degraded by soil microorganisms, ΔH met. This parameter has been calculated by microcalorimetry for many organic, inorganic and biochemical reactions, but there is only some information about its quantification for microbial growth reactions in soils. Values of ΔH met were calculated for different soil samples collected in Galicia (Spain) and Campinas (Săo Paolo, Brazil). Exponential microbial growth was stimulated in all soil samples by the addition of glucose and power-time curves were recorded. Results showed changes in the values of ΔH met calculated for all the soil samples, suggesting a dependence of this value with the microbial growth rate constant, with the percentage of growth, with the initial number of microorganisms of soil samples, with the quantity of glucose added and with the strain of bacteria growing in soil.

The interpretation of variations of ΔH met provides important qualitative and quantitative information. It reports data that allow to interpret from a qualitative point of view, the increase in biomass as a consequence of the degradation of the organic matter in soil, to understand changes in the percentages of soil organic matter and to know if the microbial population growing in differential soil samples is homogeneous. Therefore, to report that value would be very important in ecological studies, but beforehand, it is necessary to solve some problems that can appear in the experiments done to make the quantification .

metabolic enthalpy change microbial soil activity microcalorimetry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Yamano and K. Takahashi, Agric. Biol. Chem., 47 (1983) 1493.Google Scholar
  2. 2.
    C. Airoldi and S. A. M. Critter, Thermochim. Acta, 288 (1996) 73.CrossRefGoogle Scholar
  3. 3.
    K. Ljungholm, B. Norén and G. Odham, Oikos, 34 (1980) 98.Google Scholar
  4. 4.
    U. Mortensen, B. Norén and I. Wadsö, Bull. Ecol. Res. Comm., 17 (1973) 189.Google Scholar
  5. 5.
    L. Nuñez, N. Barros and I. Barja, Thermochim. Acta, 237 (1994) 73.CrossRefGoogle Scholar
  6. 6.
    G. P. Sparling, Soil Biol. Biochem., 13 (1981) 93.CrossRefGoogle Scholar
  7. 7.
    U. von Stockar and I. Marison, Adv. Biochem. Eng. Biotechnol., 40 (0989) 93.Google Scholar
  8. 8.
    M. Murgier and J. P. Belaich, J. Bacteriol., 105 (1971) 573.Google Scholar
  9. 9.
    T. Kimura and K. Takahashi, J. Gen. Microbiol., 131 (1985) 3083.Google Scholar
  10. 10.
    M. Hashimoto and K. Takahashi, Agric. Biol. Biochem., 46 (1982) 1559.Google Scholar
  11. 11.
    X. Wei-Hong, X. Chang tie, Q. Song-Shung and Y. Tian-Quan, Thermochim. Acta, 195 (1992) 297.CrossRefGoogle Scholar
  12. 12.
    N. Barros, I. Gómez Orellana, S. Feijóo and R. Balsa, Thermochim Acta, 249 (1995) 161.CrossRefGoogle Scholar
  13. 13.
    E. Gnaiger, J. Exp. Zool., 228 (1983) 471.CrossRefGoogle Scholar
  14. 14.
    E. Gnaiger and R. B. Kemp, Biochim. Biophys. Acta, 1016 (1990) 328.CrossRefGoogle Scholar
  15. 15.
    L. Yerushalmi and B. Volesky, Biotechnol. Bioeng., 23 (1981) 2373.CrossRefGoogle Scholar
  16. 16.
    L. Gustafsson, Thermochim. Acta, 193 (1991) 145.CrossRefGoogle Scholar
  17. 17.
    A. F. Gaudy, P. Y. Yang, R. Bustamante and E. T. Gaudy, Biotechnol. Bioeng., 15 (1973) 589.CrossRefGoogle Scholar
  18. 18.
    S. A. M. Critter, J. A. Simoni and C. Airoldi, Thermochim. Acta, 232 (1994) 145.CrossRefGoogle Scholar
  19. 19.
    W. J. Payne, Ann. Rev. Microbiol., 24 (1970) 17.CrossRefGoogle Scholar
  20. 20.
    D. T. Brook and M. T. Madigan, Biology of Microorganisms, Prentice Hall, New Jersey 1993.Google Scholar
  21. 21.
    M. J. Pelczar and E. C. S. Chan, Elements of Microbilogy, McGraw-Hill, 1981.Google Scholar
  22. 22.
    N. Barros, S. Feijóo and R. Balsa, Thermochim. Acta, 296 (1997) 53.CrossRefGoogle Scholar
  23. 23.
    B. Birou, I. Marison and U. von Stockar, Biotechnol. Bioeng., 30 (1987) 650.CrossRefGoogle Scholar
  24. 24.
    L. Gustafsson, Microbes in the sea, Ellis Horwood, Chichester 1987, p. 167.Google Scholar
  25. 25.
    R. J. Winzler and J. P. Baumberger, J. Cell. Comp. Physiol., 12 (1938) 183.CrossRefGoogle Scholar
  26. 26.
    M. Alexander, Introduction to Soil Microbiology, Wiley, New York 1961.Google Scholar
  27. 27.
    P. Prassad, S. Basu and N. Behera, Plant and Soil, 175 (1994) 85.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • N. Barros
    • 1
  • S. Feijóo
    • 1
  • A. Simoni
    • 2
  • S. A. M. Critter
    • 2
  • C. Airoldi
    • 2
  1. 1.Facultad de Física, Dpto. Física AplicadaUniversidad de Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.Inst. de QuimicaUniversidade Estadual de CampinasCampinas, Săo PauloBrazil

Personalised recommendations