Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 55, Issue 1, pp 173–185 | Cite as

Spectroscopic and Thermal Studies on 2,4,6-trinitro Toluene (TNT)

  • P. S. Makashir
  • E. M. Kurian
Article

Abstract

The kinetics and mechanism of the initial stage of thermal decomposition of 2,4,6-trinitro toluene (TNT), a widely used high explosive, have been studied, together with its morphology and evolved gaseous products using thermogravimetry (TG), differential thermal analysis (DTA), infrared spectroscopy (IR) and hot-stage microscopy. The kinetics of the thermolysis has been followed by IR after suppressing volatilisation by matrixing and by isothermal TG without suppressing volatilisation to simulate actual user conditions. The best linearity was obtained for Avrami-Erofeev equation for n=1 in isothermal IR and also in isothermal TG. The activation energy was found to be 135 kJ mol−1, with logA (in s−1) 12.5 by IR. The effect of additives on the initial thermolysis of TNT has also been studied. Evolved gas analysis by IR showed that CO2, NO2, NO and H2O are more dominant than N2O, HCN and CO. The decomposition involves the initial rupture of the C-NO2 bond, weakened by hydrogen bonding with the labile hydrogen atom of the adjacent CH3 group, followed by the abstraction of the hydrogen atom of the methyl group by NO2, generated in the initial step.

IRS kinetics mechanism nitro aromatic TA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. Ya. Maksimov and L. T. Pavlik, Russ. J. Phys. Chem., 49 (1975) 360.Google Scholar
  2. 2.
    A. J. B. Robertson, Trans. Faraday Soc., 44 (1948) 977.CrossRefGoogle Scholar
  3. 3.
    T. Urbanski and S. Rychter, Compt. rend., 208 (1939) 900.Google Scholar
  4. 4.
    J. W. Beckman, J. S. Wilkes and R. R. McGuire, Thermochim. Acta, 19 (1977) 111.CrossRefGoogle Scholar
  5. 5.
    R. M. Guidry and L. P. Davis, Thermochim. Acta, 32 (1979) 1.CrossRefGoogle Scholar
  6. 6.
    J. C. Dacons, H. G. Adolph and M. T. Kamlet, J. Phys. Chem., 74 (1970) 3035.CrossRefGoogle Scholar
  7. 7.
    R. N. Rogers, Anal. Chem., 39 (1967) 730.CrossRefGoogle Scholar
  8. 8.
    T. B. Brill and K. J. James, Chem. Rev., 93 (1993) 2667.CrossRefGoogle Scholar
  9. 9.
    J. Hayhurst and E. Kaisersberger, Proc. 3rd Nat. Seminar of High Energy Materials, HEMRL, Pune, 1984, p. 136.Google Scholar
  10. 10.
    Yu. Ya. Maksimov, J. Phys. Chem., 45 (1971) 441.Google Scholar
  11. 11.
    K. O. Hartman and R. C. Musso, Proceedings of Western State Section, the Combustion Institute, California, 1972 Fall Meeting Aug. 1972, p. 30.Google Scholar
  12. 12.
    P. S. Makashir, 'Studies on the thermal decomposition of some nitro compounds', M. Sc. Thesis, University of Pune, 1985.Google Scholar
  13. 13.
    K. V. Prabhakaran, S. R. Naidu and E. M. Kurian, Thermochim. Acta, 241 (1994) 199.CrossRefGoogle Scholar
  14. 14.
    P. S. Makashir and E. M. Kurian, J. Thermal Anal., 46 (1996) 225.CrossRefGoogle Scholar
  15. 15.
    K. Raha, P. S. Makashir and E. M. Kurian, J. Thermal Anal., 35 (1989) 1173.CrossRefGoogle Scholar
  16. 16.
    E. M. Kurian, J. Thermal Anal., 35 (1989) 1111.CrossRefGoogle Scholar
  17. 17.
    K. V. Prabhakaran, N. M. Bhide and E. M. Kurian, Thermochim. Acta, 200 (1993) 169.CrossRefGoogle Scholar
  18. 18.
    C. H. Bamford and C. F. H. Tipper, 'Comprehensive chemical kinetics' Vol. 22, 'Reactions in solid state' Elsevier Scientific Publishing Company, Amsterdam, The Netherlands, 1980, p. 100.Google Scholar
  19. 19.
    M. Avrami, J. Chem. Phys., 9 (1941) 177.CrossRefGoogle Scholar
  20. 20.
    G. J. Piermarini, S. Block and P. J. Miller, 'Chemistry and Physics of Energetic Materials', S. N. Bulusu (Ed.) Kluwer Academic Publishers, Boston 1990, p. 391.Google Scholar
  21. 21.
    Y. Hara, H. Eda and H. Osada, Kogyo, Kayaku, 36 (1975) 66.Google Scholar
  22. 22.
    E. G. Janzen, J. Am. Chem. Soc., 87 (1965) 3531.CrossRefGoogle Scholar
  23. 23.
    S. A. Shackelford, J. W. Beckmann and J. S. Wilkes, Org. Chem., 42 (1977) 4201.CrossRefGoogle Scholar
  24. 24.
    L. C. Smith, Explosivstoffe, 17 (1969) 252.Google Scholar
  25. 25.
    M. J. Kamlet and H. G. Adolph, Propellants, Explosives, Pyrotechnics, 4 (1979) 30.CrossRefGoogle Scholar
  26. 26.
    A. G. Turner and L. P. Davis, J. Am. Chem. Soc., 106 (1984) 5447.CrossRefGoogle Scholar
  27. 27.
    J. R. Cox and I. H. Hillier, Chem. Phys., 124 (1988) 39.CrossRefGoogle Scholar
  28. 28.
    J. T. Swanson, L. P. Davis, R. C. Dorey and W. R. Carper, Mag. Res. Chem., 24 (1986) 762.CrossRefGoogle Scholar
  29. 29.
    T. M. Mckinny, L. F. Warren, I. B. Goldberg and J. T. Swanson, J. Phys. Chem., 90 (1986) 1008.CrossRefGoogle Scholar
  30. 30.
    S. A. Shackelford, J. W. Beckman, J. S. Wilkes and M. L. Gunzier, 7th Nitroaromatic Seminar, ARDEC, Picatinny Arsenal, NJ 1977.Google Scholar
  31. 31.
    C. F. Melius, 'Chemistry and Physics of Energetic Materials', S. N. Bulusu (Ed.) Kluwer Academic Publishers, Boston 1990, p. 44.Google Scholar
  32. 32.
    T. B. Brill, 'Chemistry and Physics of Energetic Materials', S. N. Bulusu (Ed.) Kluwer Academic Publishers, Boston 1990, p. 277.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • P. S. Makashir
    • 1
  • E. M. Kurian
    • 1
  1. 1.High Energy Materials Research LaboratorySutarwadi, PuneIndia

Personalised recommendations