Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 63, Issue 3, pp 777–786 | Cite as

Kinetic Analysis of Dissociation of Smithsonite from a Set of Non-isothermal Data Obtained at Different Heating Rates

  • P. Budrugeac
  • J. M. Criado
  • F. J. Gotor
  • C. Popescu
  • E. Segal
Article

Abstract

The isoconversional methods (Friedman and Flynn-Wall-Ozawa) as well as the invariant kinetic parameters method (IKP) were used in order to work the TG data corresponding to the thermal dissociation of smithsonite. As a result we mention a mechanism change at T≈671 K. For T>671 K, which corresponds to heating rates in the range 0.57– 8.06 K min–1, a reaction order model with 1<n≤1.4 describes the experimental data.

invariant kinetic parameters method isoconversional method smithsonite thermal dissociation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. J. Gotor, M. Macías, A. Ortega and J. M. Criado, Int. J. Chem. Kin., 30 (1998) 647.CrossRefGoogle Scholar
  2. 2.
    J. M. Criado and J. Morales, Thermochim. Acta, 19 (1977) 305.CrossRefGoogle Scholar
  3. 3.
    J. M. Criado, J. Morales and V. Rives, J. Thermal Anal., 14 (1978) 221.CrossRefGoogle Scholar
  4. 4.
    J. M. Criado and A. Ortega, J. Thermal Anal., 29 (1984) 1225.CrossRefGoogle Scholar
  5. 5.
    Z. Adonyi and G. Körösi, Thermochim. Acta, 60 (1983) 23.CrossRefGoogle Scholar
  6. 6.
    N. Koga and H. Tanaka, J. Thermal Anal., 37, (1991) 347.CrossRefGoogle Scholar
  7. 7.
    J. Madarász, G. Pokol and S. Gál, J. Thermal Anal., 42 (1995) 539.Google Scholar
  8. 8.
    P. Budrugeac and E. Segal, J. Thermal Anal., 5 (1998) 269.Google Scholar
  9. 9.
    P. Budrugeac, A. L. Petre and E. Segal, J. Thermal Anal., 47 (1996) 123.CrossRefGoogle Scholar
  10. 10.
    A. I. Lesnikovich and S. V. Levchik, J. Thermal Anal., 27 (1983) 89.CrossRefGoogle Scholar
  11. 11.
    A. I. Lesnikovich and S. V. Levchik, J. Thermal Anal., 30 (1985) 677.CrossRefGoogle Scholar
  12. 12.
    S. Bourbigot, R. Delobel, M. Le Bras and Y. Schmidt, J. Chim. Phys., 89 (1992) 1835.Google Scholar
  13. 13.
    S. Bourbigot, R. Delobel, M. Le Bras and D. Normand, J. Chim. Phys., 90 (1993) 1909.Google Scholar
  14. 14.
    R. Delobel, S. Bourbigot, M. Le Bras, Y. Schmidt and J. M. Leroy, Makromol. Chem., Makromol. Symp., 74 (1993) 59.Google Scholar
  15. 15.
    S. Bourbigot, L. R. Campisi, M. Le Bras and R. Delobel, J. Text. Inst., 88, Part 1 (1997) 64.CrossRefGoogle Scholar
  16. 16.
    N. Rose, M. Le Bras, S. Bourbigot and R. Delobel, Polym. Degrad. Stab., 45 (1994) 387.CrossRefGoogle Scholar
  17. 17.
    N. Rose, M. Le Bras, S. Bourbigot, R. Delobel and B. Costes, Polym. Degrad. Stab., 54 (1996) 355.CrossRefGoogle Scholar
  18. 18.
    L. R. Campisi, S. Bourbigot, M. Le Bras and R. Delobel, Thermochim. Acta, 275 (1996) 37.CrossRefGoogle Scholar
  19. 19.
    H. L. Friedman, J. Polym. Sci., 50 (1965) 183.Google Scholar
  20. 20.
    T. Ozawa, Bull. Chem. Soc. Japan, 38 (1965) 1881.CrossRefGoogle Scholar
  21. 21.
    J. H. Flynn and L. A. Wall, J. Res. Nat. Bur. Standards, A. Phys. Chem., 70A (1966) 487.Google Scholar
  22. 22.
    P. Budrugeac, D. Homentcovschi and E. Segal, J. Therm. Anal. Cal., 63 (2001) 457.CrossRefGoogle Scholar
  23. 23.
    A. W. Coats and J. P. Redfern, Nature, 208 (1964) 68.CrossRefGoogle Scholar
  24. 24.
    J. M. Criado and M. González, Thermochim. Acta, 46 (1981) 201.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • P. Budrugeac
    • 1
  • J. M. Criado
    • 2
  • F. J. Gotor
    • 2
  • C. Popescu
    • 3
  • E. Segal
    • 4
  1. 1.ICPE-Research and Development Institute for Electrical EngineeringBucharestRomania
  2. 2.Instituto de Ciencia de Materiales de SevillaCentro Mixto Universidad de Sevilla-CSICSevillaSpain
  3. 3.LACECA Research CentreBucharestRomania
  4. 4.Department of Physical Chemistry, Faculty of ChemistryUniversity of BucharestBucharestRomania

Personalised recommendations