Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 57, Issue 2, pp 559–567 | Cite as

Products of Hydrothermal Treatment of Selenite in Potassium Chloride Solutions

  • S. Marinković
  • A. Kostić-Pulek
  • S. Durić
  • V. Logar
  • M. Logar
Article

Abstract

Selenite was boiled in KCl solutions of different concentrations at the respective boiling temperatures and atmospheric pressure. The products were subjected to X-ray diffraction analysis, qualitative infrared analysis, differential thermal analysis and microscopic examination. The product obtained in 1.0 M KCl solution was the β-form of calcium sulphate hemihydrate (α-CaSO4·0.5H2O). In more concentrated KCl solution (1.5, 2.0, 2.5, 3.0, 3.5 or 4.0 M), the α-form of calcium sulphate hemihydrate (α-CaSO4·0.5H2O) was formed, and a reaction took place between KCl and CaSO4, which gave a double salt: potassium pentacalcium sulphate monohydrate (K2SO4·5CaSO4·H2O).

calciumsulphate hemihydrate differential thermal analysis hydrothermal treatment infrared analysis selenite X-ray diffraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. N. Bushuev, V. I. Protasova, L. Yu. Kharchenko, A. I. Grankin, G. S. Bochkarev and V. M. Borisov, Zh. Neorg. Khim., 26 (1981) 2861.Google Scholar
  2. 2.
    J. A. Von Fraunhofer, Scientific Aspects of Dental Materials, Butterworths, London 1975, p. 405, 411.Google Scholar
  3. 3.
    M. Yu. Butt, S. D. Okorokov, M. M. Sychev and V. V. Timashev, Tekhnologiya vyazhushchih veshchestv, Vysshaya Shkola, Moskva 1965, p. 29, 30.Google Scholar
  4. 4.
    R. M. Abramyan, G. O. Grigoryan, O. V. Grigoryan and A. V. Koptsev, Zh. Neorg. Khim., 22 (1977) 622.Google Scholar
  5. 5.
    E. B. Shternina, Zh. Neorg. Khim., 2 (1957) 933.Google Scholar
  6. 6.
    K. T. Dubnikova and O. Ya. Samoilov, Radiokhimiya, 5 (1963) 638.Google Scholar
  7. 7.
    V. P. Kruchenko and B. A. Beremzhanov, Zh. Neorg. Khim., 23 (1978) 1922.Google Scholar
  8. 8.
    V. P. Kruchenko and B. A. Beremzhanov, Zh. Neorg. Khim., 25 (1980) 3076.Google Scholar
  9. 9.
    P. Pascal, Nouveau traité de chemie minerale, Tom IV, Masson et Cie Editeurs, Paris 1958, p. 431.Google Scholar
  10. 10.
    T. V. Kuznetsova, I. V. Kudryashov and V. V. Timashev, Fizicheskaya khimiya vyazhushchikh materialov, Vysshaya shkola, Moskva 1989, p. 191, 194.Google Scholar
  11. 11.
    S. Marinković, A. Kostić-Pulek and R. Tomanec, Ceramics Today-Tomorrow's Ceramics, Elsevier Science Publishers B. V., 1991, p. 151.Google Scholar
  12. 12.
    S. Marinković, A. Kostić-Pulek, R. Tomanec, S. Djurić and M. Logar, Physicochem. Probl. Miner. Process, 27 (1993) 151.Google Scholar
  13. 13.
    J. Bensted and S. Prakash, Nature, 219 (1968) 60.Google Scholar
  14. 14.
    R. A. Niquist and R. O. Kagel, Infrared Spectra of Inorganic Compounds, Academic Press, New York 1971, p. 268.Google Scholar
  15. 15.
    J. A. Gadsden, Infrared Spectra of Minerals and Related Inorganic Compounds, Butter-worths, Chichester 1975, p. 16, 27, 101.Google Scholar
  16. 16.
    S. V. Kushnir and Ya. N. Shuter, Zh. Neorg. Khim., 28 (1983) 593.Google Scholar
  17. 17.
    D. A. Powell, Nature, 182 (1958) 792.Google Scholar
  18. 18.
    P. P. Budnikov and Z. S. Kozyreva, Voprosy Petrograf i Miner., 2 (1953) 342.Google Scholar
  19. 19.
    I. N. Lepeshkov and L. V. Novikova, Zh. Neorg. Khim., 3 (1958) 2395.Google Scholar
  20. 20.
    A. P. Perova, Zh. Neorg. Khim., 15 (1970) 2821.Google Scholar
  21. 21.
    V. S. Rassonskaya and N. K. Semendyaeva, Zh. Neorg. Khim., 6 (1961) 1745.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • S. Marinković
    • 1
  • A. Kostić-Pulek
    • 1
  • S. Durić
    • 1
  • V. Logar
    • 1
  • M. Logar
    • 1
  1. 1.Faculty of Mining and GeologyUniversity of BelgradeBelgradeYugoslavia

Personalised recommendations