Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 53, Issue 2, pp 431–439 | Cite as

Vapor Pressure Determination by Pressure DSC

  • A. Boller
  • H. G. Wiedemann
Article

Abstract

A new pressure DSC module (Mettler DSC27HP) and its abilities for vapor pressure determination in the range of subambient pressure to 7 MPa are presented. To compare the new to an established method, vapor pressures of caffeine, naphthalene and o-phenacetin have been determined both by pressure DSC and the Knudsen effusion cell method. These results, including the derived heats of evaporation and heats of sublimation, are compared to literature values.

Knudsen effusion method pressure DSC steel ball method vapor pressure determination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Knudsen, Ann. Phys., 28 (1909) 999.Google Scholar
  2. 2.
    M. Knudsen, Ann. Phys., 29 (1909) 179.Google Scholar
  3. 3.
    International Critical Tables, McGraw-Hill, 1959.Google Scholar
  4. 4.
    J. D'Ans and E. Lax, Taschenbuch für Chemiker und Physiker, Band I, 3. Auflage, Springer-Verlag, Berlin/Heidelberg/New York, 1967, pp. 927, 942.Google Scholar
  5. 5.
    H. Lux, Anorganisch Chemische Experimentierkunst, 2. Auflage, Johann Ambrosius Barth Verlag, Leipzig, 1959, pp. 479ff.Google Scholar
  6. 6.
    H. Kienitz, Methoden der organischen Chemic, Band III, 4. Auflage, Georg Thieme Verlag, Stuttgart, 1955.Google Scholar
  7. 7.
    A. N. Nesmayanov, Vapor Pressure of the Chemical Elements, Elsevier, Amsterdam/London/New York, 1963, p. 119.Google Scholar
  8. 8.
    T. Boublik, F. Vietor and E. Haler, The Vapour Pressure of Pure Substances, 1973, p. 474.Google Scholar
  9. 9.
    L. F. Cordes and S. Schreiner, Z. Anorg. Allg. Chem., 299 (1959) 87.CrossRefGoogle Scholar
  10. 10.
    H. G. Wiedemann, Thermochim. Acta, 3 (1972) 355.CrossRefGoogle Scholar
  11. 11.
    H. G. Wiedemann, Chem. Ing. Techn., 11 (1964) 1105.CrossRefGoogle Scholar
  12. 12.
    J. Pfefferkorn and H. G. Wiedemann, Progress in Vacuum Microbalance Technique, Vol. 2, Ed. S. C. Bevan et al., Heyden & Son, London 1973, p. 221.Google Scholar
  13. 13.
    H. G. Wiedemann, Thermochim. Acta, 187 (1991) 245.CrossRefGoogle Scholar
  14. 14.
    H. G. Wiedemann and A. Boller, Int. Lab. Jan/Feb. 1992.Google Scholar
  15. 15.
    H. Bothe and H. K. Cammenga, J. Thermal Anal., 16 (1979) 267.CrossRefGoogle Scholar
  16. 16.
    R. Sabbah, I. Antipine, M. Coten and L. Davy, Thermochim. Acta, 115 (1987) 153.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • A. Boller
    • 1
  • H. G. Wiedemann
    • 2
  1. 1.Department of ChemistryThe University of TennesseeKnoxvilleUSA
  2. 2.Mettler-Toledo AGGreifenseeSwitzerland

Personalised recommendations