Journal of Thermal Analysis and Calorimetry

, Volume 56, Issue 3, pp 1047–1057 | Cite as

Crystallization and Melting of β-Nucleated Isotactic Polypropylene

  • J. Varga
  • I. Mudra
  • G. W. Ehrenstein


Ca salts of suberic (Ca-Sub) and pimelic acid (Ca-Pim) were synthesized and used as β-nucleating agents in different grades of isotactic polypropylene (IPP). Propylene homo-, random- and block-copolymers containing these additives crystallize principally in pure β-modification as demonstrated in isothermal and non-isothermal crystallization experiments. Ca-Sub proved the most effective β-nucleating agent known, so far. It broadens the upper crystallization temperature range of pure β-IPP formation up to 140°C. The effect of the additives on the crystallization and melting characteristics of the polymers was studied. The degree of crystallinity of the β-modification was found to be markedly higher than that of α-IPP. High temperature melting peak broadening was first observed and discussed in literary results regarding the same phenomenon for α-IPP.

β-nucleating agent β-polypropylene crystallization degree of crystallinity melt enthalpies melting recrystallization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Varga, in: Polypropylene, Structure, Blends, and Composites, J. Karger-Koesis, Ed., Chapman and Hall, London 1995, Vol. 1, Chap. 3.Google Scholar
  2. 2.
    J. Varga, J. Thermal Anal., 31 (1986) 165.CrossRefGoogle Scholar
  3. 3.
    J. Varga, J. Thermal Anal., 35 (1989) 2013.CrossRefGoogle Scholar
  4. 4.
    H. J. Leugering, Makromol. Chem., 109 (1967) 204.CrossRefGoogle Scholar
  5. 5.
    P. Jacoby, B. H. Bersted, W. J. Kissel and C. E. Smith, J. Polym. Sci., B24 (1986) 461.Google Scholar
  6. 6.
    J. Varga, F. Schulek-Tóth and M. Pati Nagy, Hung. Pat. No. 209132. 29.04.1992.Google Scholar
  7. 7.
    B. Monasse and J. M. Haudin, Colloid Polym. Sci., 263 (1985) 822.CrossRefGoogle Scholar
  8. 8.
    J. Varga and G. Garzó, Acta Chim. Hung., 128 (1991) 303.Google Scholar
  9. 9.
    J. Varga, J. Mat. Sci., 27 (1992) 2557.CrossRefGoogle Scholar
  10. 10.
    R. J. Samuels, J. Appl. Polym. Sci., 13 (1975) 1417.Google Scholar
  11. 11.
    K. Kamide and K. Yamaguchi, Makromol. Chem., 162 (1972) 219.CrossRefGoogle Scholar
  12. 12.
    Y. S. Yadav and P. C. Jain, Polymer, 27 (1986) 721.CrossRefGoogle Scholar
  13. 13.
    P. Corradini, R. Napolitano, L. Oliva and B. Pirozzi, Makromol. Chem., Rapid Comm., 3 (1982) 753.CrossRefGoogle Scholar
  14. 14.
    V. Petraccone, G. Guerra, C. De Rosa and A. Tuzi, Macromolecules, 18 (1985) 813.CrossRefGoogle Scholar
  15. 15.
    V. Petraccone, C. De Rosa, G. Guerra and A. Tuzi, Makromol. Chem., Rapid Comm., 5 (1984) 631.CrossRefGoogle Scholar
  16. 16.
    C. De Rosa, G. Guerra, R. Napolitano, V. Petraccone and B. Pirozzi, J. Thermal Anal., 30 (1985) 1331.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • J. Varga
    • 1
  • I. Mudra
    • 1
  • G. W. Ehrenstein
    • 2
  1. 1.Department of Plastics and Rubber TechnologyTechnical University of BudapestBudapestHungary
  2. 2.Lehrstuhl für KunststofftechnikFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations