Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 63, Issue 1, pp 297–308 | Cite as

Heat Capacities and Thermodynamic Properties of Fenpropathrin (C22H23O3N)

  • Z.-C. Tan
  • B. Xue
  • S.-W. Lu
  • S.-H. Meng
  • X.-H. Yuan
  • Y.-J. Song
Article

Abstract

The heat capacities of fenpropathrin in the temperature range from 80 to 400 K were measured with a precise automatic adiabatic calorimeter. The fenpropathrin sample was prepared with the purity of 0.9916 mole fraction. A solid—liquid fusion phase transition was observed in the experimental temperature range. The melting point, Tm, enthalpy and entropy of fusion, ΔfusHm, ΔfusSm, were determined to be 322.48±0.01 K, 18.57±0.29 kJ mol−1 and 57.59±1.01 J mol−1 K−1, respectively. The thermodynamic functions of fenpropathrin, H(T)H(298.15), S(T)S(298.15) and G(T)G(298.15), were reported with a temperature interval of 5 K. The TG analysis under the heating rate of 10 K min−1 confirmed that the thermal decomposition of the sample starts at ca. 450 K and terminates at ca. 575 K. The maximum decomposition rate was obtained at 558 K. The purity of the sample was determined by a fractional melting method.

adiabatic calorimetry fenpropathrin heat capacity TG thermal decomposition thermodynamic function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Kasamatsu, N. Matsuo and S. Tsuda, Insecticide-acaricide Rody (fenpropathrin), Sumitomo Kagaku, 2 (1989) 19.Google Scholar
  2. 2.
    J. Q. Cai, Z. R. Li, J. X. Yu, S. W. Lu, Z. W. Si, X. H. Yuan and H. F. Guo, Synthesis of fenpropathrin from 2,2,3,3-tetramethylcyclopropane carboxylic acid by cyanohydrin method, CN 1062348A, 1992.Google Scholar
  3. 3.
    J. Q. Cai, J. X. Yu, X. H. Yuan, Z. W. Si, Z. R. Li, S. W. Lu and H. F. Guo, Synthesis of 2,2,3,3,-tetramethylcyclopropane carboxylic acid, CN 1062345A, 1992.Google Scholar
  4. 4.
    X. H. Yuan, S. W. Lu and Z. R. Li, A method to prepare fenpropathrin with a concentration of more than 90%, CN 1194265, 1998.Google Scholar
  5. 5.
    E. F. Jr. Westrum, G. T. Furukawa and J. P. McCullough, Experimental Thermodynamics, Vol. 1, J. P. McCullough and D. W. Scott (Eds.), Butterworths, London 1968, p. 133.Google Scholar
  6. 6.
    Z. C. Tan, L. X. Zhou, S. X. Chen and A. X. Yin, Scientia Sinica (Series B), 26 (1983) 1014.Google Scholar
  7. 7.
    Z. C. Tan, A. X. Yin, S. X. Chen and L. X. Zhou, Science in China (Series B), 34 (1991) 560.Google Scholar
  8. 8.
    D. A. Ditmars, S. Ishihara, S. S. Chang, G. Bernstein and E. D. West, J. Res. Natl. Bur. Stands., 87 (1982) 159.Google Scholar
  9. 9.
    J. H. Chen and C. R. Li, Reaction kinetics of thermal analysis, Huaxue Tongbo, 1 (1980) 7.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Z.-C. Tan
    • 1
  • B. Xue
    • 1
  • S.-W. Lu
    • 2
  • S.-H. Meng
    • 1
  • X.-H. Yuan
    • 2
  • Y.-J. Song
    • 1
  1. 1.Thermochemistry Laboratory, Dalian Institute of Chemical PhysicsChinese Academy of ScienceDalianP.R. China
  2. 2.National Engineering Research Center for Catalysis, Dalian Institute of Chemical PhysicsChinese Academy of ScienceP. R. China

Personalised recommendations