Thermodynamic Aspects of the Vaterite-Calcite Phase Transition

  • G. Wolf
  • E. Königsberger
  • H. G. Schmidt
  • L.-C. Königsberger
  • H. Gamsjäger


Although vaterite is the least stable anhydrous calcium carbonate polymorph, it is formed as a metastable phase in some normal and pathological biomineralisation processes. In this work, thermodynamic aspects of the vaterite-calcite phase transition were comprehensively studied. Vaterite samples were prepared by different methods and characterised for the composition, crystal structure, specific surface and grain size. All products were identified to be pure vaterite by careful X-ray diffraction measurements. The enthalpy and Gibbs energy of transition were determined by precise calorimetric and potentiometric measurements. The reliability of the thermodynamic data for the vaterite-calcite phase transition derived from this work was shown by the use of different calorimetric methods to determine the enthalpy of transition and the independent measurements of heat capacity and entropy of vaterite. Our recommended values are Δtrs G*=−2.9±0.2 kJ mol−1 , Δ trs H *=−3.4±0.2 kJ mol−1 and Δ trs S *=−1.7±0.9 J K−1 mol−1 , where the uncertainties are given as twice the standard deviations.

calcite calcium carbonate polymorphs phase transition thermodynamics vaterite 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. G. Turnbull, Geochim. Cosmochim. Acta, 37 (1973) 1539.CrossRefGoogle Scholar
  2. 2.
    L. Addadi and S. Weiner, Angew. Chem. Int. Ed. Engl., 31 (1992) 153.CrossRefGoogle Scholar
  3. 3.
    H. A. Lowenstam and D. A. Abbott, Science, 188 (1975) 363.Google Scholar
  4. 4.
    A. Hall and J. D. Taylor, Mineral. Mag., 38 (1971) 521.Google Scholar
  5. 5.
    L. Addadi, J. Aizenberg, S. Albeck, G. Falini and S. Weiner, Supramolecular Stereochemistry, (1995) 127.Google Scholar
  6. 6.
    H. Vater, Z. Kristallogr., 27 (1897) 486.Google Scholar
  7. 7.
    H. Vater, Z. Kristallogr., 30 (1899) 373.Google Scholar
  8. 8.
    M. Maciejewski, H.-R. Oswald and A. Reller, Thermochim. Acta, 234 (1994) 315.CrossRefGoogle Scholar
  9. 9.
    T. Ogino, T. Suzuki and K. Sawada, Geochim. Cosmochim. Acta, 51 (1987) 2757.CrossRefGoogle Scholar
  10. 10.
    F. Baitalow, G. Wolf and H.-G. Schmidt, J. Thermal Anal., 52 (1998) 5.CrossRefGoogle Scholar
  11. 11.
    R. A. Robie, B. S. Hemingway and J. R. Fischer, U.S. Geol. Survey Bull., 1452 (1978).Google Scholar
  12. 12.
    W. L. de Keyser and L. Degueldre, Bull. Soc. Chim. Belg., 59 (1950) 40.CrossRefGoogle Scholar
  13. 13.
    H.-J. Meyer, Z. Krist., 121 (1965) 220.CrossRefGoogle Scholar
  14. 14.
    H.-J. Meyer, Z. Krist., 128 (1969) 183.CrossRefGoogle Scholar
  15. 15.
    G. Wolf, J. Lerchner, H. Schmidt, H. Gamsjäger, E. Königsberger and P. Schmidt, J. Thermal Anal., 46 (1996) 353.CrossRefGoogle Scholar
  16. 16.
    E. Königsberger, J. Bugajski and H. Gamsjäger, Geochim. Cosmochim. Acta, 53 (1989) 2807.CrossRefGoogle Scholar
  17. 17.
    T. Ogino, T. Suzuki and K. Sawada, J. Cryst. Growth, 100 (1990) 159.CrossRefGoogle Scholar
  18. 18.
    I. Mills, T. Cvita., K. Homann, N. Kallay and K. Kuchitsu, Quantities, units and symbols in physical chemistry, 2nd edition, Blackwell Scientific Publications, Oxford 1993.Google Scholar
  19. 19.
    I. Grenthe, J. Fuger, R. J. M. Konings, R. J. Lemire, A. B. Muller, C. Nguyen-Trung and H. Wanner, ‘Chemical Thermodynamics of Uranium’ in Chemical Thermodynamics, vol. 1 (eds. H. Wanner and I. Forest), OECD-NEA, North Holland, Amsterdam 1992.Google Scholar
  20. 20.
    S. Rao, C. V. Natarajan and C. N. R. Rao, J. Am. Ceram. Soc., 51 (1968) 179.CrossRefGoogle Scholar
  21. 21.
    T. Lemke, Diplomarbeit 1996, Technical University BAF Freiberg, Germany.Google Scholar
  22. 22.
    L. A. K. Staveley and R. G. Linford, J. Chem. Thermodyn., 1 (1969) 1.CrossRefGoogle Scholar
  23. 23.
    W. Nernst and F. Schwers, Sitz. ber. Königl. Preuss. Akad. Wiss. Math. Naturwiss. Kl. Ab. II (1914) 855.Google Scholar
  24. 24.
    F. Simon and R. S. Swain, Z. Phys. Chem. Leipzig, B 28 (1935) 189.Google Scholar
  25. 25.
    C. T. Anderson, J. Amer. Chem. Soc., 56 (1934) 849.CrossRefGoogle Scholar
  26. 26.
    K. K. Kelley, Bull. US Bur. Mines, 584 (1960).Google Scholar
  27. 27.
    A. Magnus, Physik. Zeitschr., 14 (1913) 5.Google Scholar
  28. 28.
    H. E. Gronow and H. E. Schwiete, Z. Anorg. Allg. Chem., 216 (1933) 185.CrossRefGoogle Scholar
  29. 29.
    K. Kobayashi, Sci. Rep. Tohoku Univ. Ser. 1, 35 (1951) 103.Google Scholar
  30. 30.
    G. K. Jacobs, D. M. Kerrick and K. M. Krupka, Phys. Chem. Minerals, 7 (1981) 55.CrossRefGoogle Scholar
  31. 31.
    G. Wolf and H. G. Schmidt, ‘Heat capacities C p of different CaCO3 polymorphs’ Res. Rep. 07/97, Institute of Physical Chemistry, Technical University BAF Freiberg, 1997.Google Scholar
  32. 32.
    J. C. van Miltenburg, G. J. K. van Berg, T. Lemke and G. Wolf, Proc. Journée des équillibre entre des phases, Nancy, (1998) 21.Google Scholar
  33. 33.
    D. Langmuir, Geochim. Cosmochim. Acta, 42 (1978) 547.CrossRefGoogle Scholar
  34. 34.
    L. N. Plummer and E. Busenberg, Geochim. Cosmochim. Acta, 46 (1982) 1011.CrossRefGoogle Scholar
  35. 35.
    D. Garvin, V. B. Parker and H. J. White jr., CODATA Thermodynamic Tables, Springer, Berlin 1987.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • G. Wolf
    • 1
  • E. Königsberger
    • 2
  • H. G. Schmidt
    • 1
  • L.-C. Königsberger
    • 2
  • H. Gamsjäger
    • 1
  1. 1.Department of Physical ChemistryTechnical University Bergakademie FreibergFreibergGermany
  2. 2.Department of Physical ChemistryUniversity of LeobenLeobenAustria

Personalised recommendations