Journal of Thermal Analysis and Calorimetry

, Volume 56, Issue 2, pp 763–769 | Cite as

Crystallization Kinetics by Thermal Analysis

  • J. Málek


Thermal Analysis techniques are widely used to study the crystallization kinetics in amorphous solids. Such experimental data are frequently interpreted in terms of the Johnson-Mehl-Avrami (JMA) nucleation-growth model. This paper discusses the limits of such approach. A simple method is proposed to verify the applicability of the JMA model as well as the basic assumptions in kinetic analysis. It is shown that the autocatalytic model includes the JMA model and it is a plausible description of the crystallization kinetics. The main advantage of the autocatalytic model is the possibility to describe quantitatively the kinetics of complex crystallization processes. The experimental data for crystallization of a chalcogenide glass analyzed in this paper clearly demonstrate rather complex nature of these processes. As a consequence it is very difficult to explore real kinetic mechanism of the crystallization process unless some complementary studies are made.

autocatalytic model crystallization kinetics Johnson-Mehl-Avrami model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. A. Johnson and R. F. Mehl, Trans. Am. Inst. Miner. Eng., 135 (1939) 419.Google Scholar
  2. 2.
    M. Avrami, J. Phys. Chem., 8 (1940) 212.CrossRefGoogle Scholar
  3. 3.
    A. N. Kolmogorov, Izvestia Akad. Nauk USSR, Ser Math., 1 (1937) 355.Google Scholar
  4. 4.
    B. V. Erofeev, Dokl. Acad. Sci. USSR, 52 (1946) 511.Google Scholar
  5. 5.
    J. W. Christian, The Theory of Transformations in Metals and Alloys, Pergamon, New York, 2nd ed., 1975.Google Scholar
  6. 6.
    D. W. Henderson, J. Thermal Anal., 15 (1979) 325.CrossRefGoogle Scholar
  7. 7.
    D. W. Henderson, J. Non-Cryst. Solids, 30 (1979) 301.CrossRefGoogle Scholar
  8. 8.
    M. P. Shepilov and D. S. Baik, J. Non-Cryst. Solids, 171 (1994) 141.CrossRefGoogle Scholar
  9. 9.
    J. Šesták, Thermophysical Properties of Solids, Their Measurements and Theoretical Analysis, Elsevier, Amsterdam 1984.Google Scholar
  10. 10.
    J. Málek, Thermochim. Acta, 138 (1989) 337.CrossRefGoogle Scholar
  11. 11.
    J. Málek, Thermochim. Acta, 200 (1992) 257.CrossRefGoogle Scholar
  12. 12.
    J. Málek, Thermochim. Acta, 267 (1995) 61.CrossRefGoogle Scholar
  13. 13.
    N. Ryšavá, L. Tichy, Č. Barta and A. Tříska, H. Tichá, Phys. Stat. Sol. (a), 87 (1985) K13.Google Scholar
  14. 14.
    N. Ryšavá, T. Spasov and L. Tichy, J. Thermal Anal., 32 (1987) 1015.CrossRefGoogle Scholar
  15. 15.
    N. Ryšavá, Č. Barta and L. Tichy, J. Mat. Sci. Lett., 8 (1989) 91.CrossRefGoogle Scholar
  16. 16.
    J. Málek and V. Smrčka, Thermochim. Acta, 186 (1991) 153.CrossRefGoogle Scholar
  17. 17.
    J. Málek, E. Černošková, R. Švejka, J. Šesták and G. Van der Plaats, Thermochim. Acta, 280/281 (1996) 353.CrossRefGoogle Scholar
  18. 18.
    K. A. Jackson, D. R. Uhlmann and J. D. Hunt, J. Cryst. Growth, 1 (1967) 1.CrossRefGoogle Scholar
  19. 19.
    E. G. Prout and F. C. Tompkins, Trans. Faraday. Soc., 40 (1944) 488.CrossRefGoogle Scholar
  20. 20.
    W. L. Ng, Aust. J. Chem., 28 (1975) 1169.CrossRefGoogle Scholar
  21. 21.
    J. Šesták and G. Berggren, Thermochim. Acta, 3 (1971) 1.CrossRefGoogle Scholar
  22. 22.
    J. Málek, J. M. Criado, J. Šesták and J. Militky, Thermochim. Acta, 153 (1989) 429.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • J. Málek
    • 1
  1. 1.Joint Laboratory of Solid State ChemistryAcademy of Sciences of the Czech Republic and University of PardubicePardubiceCzech Republic

Personalised recommendations