Journal of Nanoparticle Research

, Volume 2, Issue 3, pp 279–292

Nucleation Based Explanation of Crystalloluminescence

  • Terry A. Ring


In crystalloluminescence light is produced during crystallization. While there was work on crystalloluminescence during the 18th, 19th and very early 20th centuries, crystalloluminescence is a phenomena without scientific explanation. A new nucleation theory, based on a cluster population balance accounting for all possible cluster–cluster collisions, is presented that uses the energetics of clusters of various geometries determined from ab initio quantum mechanical calculations. This theory predicts cluster population dynamics during nucleation, as well as the spectrum of light emitted during nucleation due to the energy released by clusters activated by collision. Further experimental work is suggested to determine the nature of the light spectrum resulting from crystalloluminescence to validate this mechanism of light production.

nucleation population balance clusters crystalloluminescence nanosize ab initio quantum mechanical simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abraham F.F., 1974. Homogenoeous Nucleation Theory: The Pretrnasistion Theory of Vapor Condensation. Academic Press Inc., New York.Google Scholar
  2. Bandrowski E., 1894 & 1895. Aeit Phys. Chem. XV, 323-326 and XVII, 234-244.Google Scholar
  3. Barber B.P. & S.J. Putterman, 1991. Nature (London) 352, 318.Google Scholar
  4. Barber B.P., R. Hiller, K. Arisaka, H. Fetterman & S.J. Putterman, 1992. J. Acoutst. Soc. Am. 91, 3061.Google Scholar
  5. Berzelius J.J., 1823. Lehrbuch der Cyemie 5th ed. 5 c. 1;195, 1843-1848 and Wohler F., Journal fur Chemie und Physik.Google Scholar
  6. Bigelow, 1912. Theoretical and Physical Chemistry. p. 516. CRC Handbook of Chemistry & Physics, 54th Ed., CRC Press, 1974.Google Scholar
  7. Dobereiner J.W., 1824. Dobereiner published an account of Buchner. Schweigger's Journal fur Chemie and Physik 41, 221-228; With Nachtrag by Schweigger, pp. 228-232. Also Quart. Jour. Sci. 19, 341 (1825).Google Scholar
  8. Eberlein C., 1996. Phys. Rev. Lett. 76(20), 3842.PubMedGoogle Scholar
  9. Flint E.B. & K.S. Suslick, 1991. Science 253, 1397 and references therein.Google Scholar
  10. Frenzel H. & H. Schultes, 1934. Z. Phys. Chem Abt. B 27, 421.Google Scholar
  11. Gaitan D. F., L.A. Crum, C.C. Church & R.A Roy, 1992. J. Acoust. Soc. Am. 91, 3166.Google Scholar
  12. Gerlach R.L. & T.N. Rhodin, 1970. Surf. Sci. 19, 403.Google Scholar
  13. Giobert G.A., 1790. J. De Phys. (Rozier) 36, 256-262Google Scholar
  14. Harvey E.N., 1957. A History of Lumiscence-From the Earlisest Times until 1900. Am. Philospohical Soc., Philidelphia.Google Scholar
  15. Harvey E.N., 1920. The Nature of Animal Light. Philidelphia.Google Scholar
  16. Heimenz P.C., 1986. Principles of Colloid and Surface Chemistry. 2nd edn. Marcel Dekker, Inc., New York, p. 642.Google Scholar
  17. Hermann K.S.L., 1824. Schweigger's Journal fur Chemie und Physik 40, 70-75.Google Scholar
  18. Julia-Fontenelle J.S.E., 1859. Julia-Fontenelle discussed the effect with Becquerel, E, Ann. Chim et Phys. (3rd ser) 55, 86.Google Scholar
  19. Hiller R., S.J. Putterman & B.P. Barber, 1992. Phys. Rev. Lett. 69, 1182.PubMedGoogle Scholar
  20. Katz J.L., H. Saltsburg & H. Reiss, 1996. J. Colloid Interface Sci. 21, 560-568.Google Scholar
  21. Katz J.L. & M.D. Donohue, 1979. In: Prigogine I. and Rice S.A. eds. Advances in Chemical Physics,Vol. XL.Wiley, NewYork, pp. 137-155.Google Scholar
  22. Kolmogorov A.N., 1941. C.R. Acad. Sci, U.S.S.R. 30, 301.Google Scholar
  23. Knight W.D., K. Clemenger, W.A. de Heer, W.A. Saunders, M.Y. Chou & M.L. Cohen, Phys Rev Letters, 1994 53(24) 2141-2143.Google Scholar
  24. Koutecky J. & P. Fantucci, 1986 Chem. Rec. 86, 539-587.Google Scholar
  25. Lang N.D. & W. Kohn, 1970. Phys. Rev. B. 1, 4555.Google Scholar
  26. Liepe L., 1988. VDH Verlagsgesellschaft mbH, Weinheim, 29.Google Scholar
  27. M.L., Phys Rev Letters, 53(24)2141-3 (1984).Google Scholar
  28. Mansaur L.K., 1987. Mechanisms and kinetics of radiation effects in metals and alloys. In: Gordon R. Freeman, ed. Kinetics of Nonhomogeneous Processes.Wiley-Interscience, pp. 411-426 references 104-130 therein.Google Scholar
  29. Nielsen A.E., 1984. J. Crystal Growth 67, 289-310.Google Scholar
  30. Obuchov A.M. & A.M. Jaglom, 1958. In: Goering H., ed. Sammelblad zur Statistische Theorie derTurbulenz. Berlin, 97-125.Google Scholar
  31. Penny F., 1855. Phil. Mag. 4(10), 401-406.Google Scholar
  32. Pfaff C.H., 1815. Schweigger's Journal fur Chemie und Physik 15, 273-276.Google Scholar
  33. Pickel J.G., 1787. Taschenbuch fur Scheidekunstler aus das Jar 1786. p. 55.Google Scholar
  34. Pleischel A.M., 1835. Baugartner, Ztschr. Phys. f. verwandte Wiss. 3, 211-222.Google Scholar
  35. Pontus J., 1833. de Soc. des Sc.Phys, et Chim, et Arts Ind. Et Agric. De France 1, 131-132.Google Scholar
  36. Randolph A.D. & M.A. Larson, 1971. Theory of Particulate Processes. Academic Press, New York.Google Scholar
  37. Rose H., 1835. Ann. D. Physik 35, 481-485.Google Scholar
  38. Rose H., 1836a. Ann. D. Physik 52, 443-464.Google Scholar
  39. Rose H., 1836b. Ann. D. Physik 52, 585.Google Scholar
  40. Rose H., 1841. Ann. de Chem. et Phys., Phys 61, 288-293.Google Scholar
  41. Rose H., 1861. Ann. de Chem. et Phys. 61, 288-293.Google Scholar
  42. Rotta J.C., 1972. Turbulente Stromungen. B.G. Teubner, Stuttgart, 96.Google Scholar
  43. Schoenwald, 1786. Crell's Chemische Ann. F.d. Freunde d. Naturlehre 2, 48-50.Google Scholar
  44. Schwarz G. Oesterr, 1903. Chem. Ztg., Abstract in Fortsch. D Physik 59(2), 452.Google Scholar
  45. Schiller J.M., 1791. Taschenbuch fur Scheidekunstler aus das Jar 1791, p. 45.Google Scholar
  46. Scott W.T., 1968. J. Atmos. Sci., 25, 54.Google Scholar
  47. Taylor G.I., 1935. Proc. Toy Soc. A151, 421.Google Scholar
  48. Von Reichenback, 1861. Ann. Der Physik 112, 459-468.Google Scholar
  49. Walton A.G., 1969. Nucleation in liquids and solutions. In: Zettlemoyer A.C. ed. Nucleation. Marcel Dekker, Inc., New York, N.Y. 1969. p. 244.Google Scholar
  50. Weiser H.B., 1918. J. Phys. Chem. XXII, 439-449.Google Scholar
  51. Wiedersich H. & J.L. Katz, 1977. J. Colloid Interface Sci. 61, 351.Google Scholar
  52. Wiedersich H., 1975. In: Nelson R.S. ed. The Physics of Irradiation-Produced Voids. AERER 7934, p. 147.Google Scholar
  53. Wiedemann E. & G.C. Schmidt, 1895. Ann. Der Physic 56: 210-254.Google Scholar
  54. Wu C.C. & P.H. Roberst, 1994. Proc. R. Soc. London A 445, 323.Google Scholar
  55. Zeldovich Ya. B., 1942. J. Exp. Theor. Phys (Russ.) 12, 525-538.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Terry A. Ring
    • 1
  1. 1.Department of Chemical and Fuels Engineering, Department of Materials Science and EngineeringUniversity of UTSalt Lake CityUSA

Personalised recommendations