Advertisement

Optimization and Engineering

, Volume 1, Issue 2, pp 189–213 | Cite as

Optimal Design of Trusses Under a Nonconvex Global Buckling Constraint

  • Aharon Ben-Tal
  • Florian Jarre
  • Michal Kočvara
  • Arkadi Nemirovski
  • Jochem Zowe
Article

Abstract

We propose a novel formulation of a truss design problem involving a constraint on the global stability of the structure due to the linear buckling phenomenon. The optimization problem is modelled as a nonconvex semidefinite programming problem. We propose two techniques for the numerical solution of the problem and apply them to a series of numerical examples.

truss design buckling nonconvex semidefinite programming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Achtziger, A. Ben-Tal, M. Bendsøe, and J. Zowe “Equivalent displacement based formulations for maximum strength truss topology design,” IMPACT of Computing in Science and Engineering vol. 4, pp. 315-345, 1992.Google Scholar
  2. K.-J. Bathe, Finite Element Procedures in Engineering Analysis, Prentice-Hall: Englewood Cliffs, NJ, 1982.Google Scholar
  3. M. P. Bendsøe, Optimization of Structural Topology, Shape and Material, Springer-Verlag: Heidelberg, 1995.Google Scholar
  4. R. D. Cook, Concepts and Applications in Finite Element Analysis, J. Wiley & Sons: New York, 1974.Google Scholar
  5. Y. C. Fung, Foundation of Solid Mechanics. Prentice-Hall: Englewood Cliffs, NJ, 1965.Google Scholar
  6. F. Jarre 1998, 'A QQP-Minimization Method for Semidefinite and Smooth Nonconvex Programs'. Technical report, Trierer Forschungsberichte Mathematik/Informatik Nr. 12, Universität Trier.Google Scholar
  7. N. K. Karmarkar “A new polynomial-time algorithm for linear programming,” Combinatorica vol. 4, pp. 373-395, 1984.Google Scholar
  8. M. Kočvara, M. Zibulevsky, and J. Zowe: 1998, 'Mechanical design problems with unilateral contact'. M2AN Mathematical Modelling and Numerical Analysis 32, 255-282.Google Scholar
  9. J. E. Nesterov and A. S. Nemirovskii, Interior Point Polynomial Methods in Convex Programming: Theory and Applications, SIAM: Philadelphia, 1994.Google Scholar
  10. M. J. D. Powell: 1997, 'The use of band matrices for second derivative approximations in trust region algorithms'. Technical report, NA1997/12, Cambridge University.Google Scholar
  11. U. T. Ringertz,: 1995a, 'An algorithm for optimization of non-linear shell structures'. Internat. J. Numer. Methods Engrg. 38, 299-314.Google Scholar
  12. U. T. Ringertz, “Eigenvalues in optimum structural design,” in Large Scale Optimization, A. Conn and F. Santosa, eds., Springer, 1995b.Google Scholar
  13. G. A. Shultz, R. B. Schnabel, and R. H. Byrd: 1985, 'A family of trustregion based algorithms for unconstrained optimization with strong global convergence properties'. SIAM J. on Numerical Analysis 22, 47-67.Google Scholar
  14. J. M. T. Thompson and G. W. Hunt, A General Theory of Elastic Stability, J. Wiley & Sons: London, 1973.Google Scholar
  15. S. P. Timoshenko and J. M. Gere, Theory of Elastic Stability, McGraw-Hill: New York, 1961.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Aharon Ben-Tal
    • 1
  • Florian Jarre
    • 2
  • Michal Kočvara
    • 3
  • Arkadi Nemirovski
    • 1
  • Jochem Zowe
    • 3
  1. 1.Faculty of Industrial Engineering and ManagementTechnion—Israel Institute of TechnologyHaifaIsrael
  2. 2.Department of MathematicsUniversity of Notre DameNotre DameUSA
  3. 3.Institute of Applied MathematicsUniversity of ErlangenErlangenGermany

Personalised recommendations