Prevention Science

, Volume 1, Issue 2, pp 89–106 | Cite as

The Importance of Neurobiological Research to the Prevention of Psychopathology

  • Diana Fishbein
Article

Abstract

There is both a biological and environmental component to the neural substrates for various forms of psychopathology. Brain dysfunction itself not only constitutes a formidable liability to psychopathology, but also has an impact on environmental and social responses to the individual, compounding the risk for an adverse outcome. Environmental conditions, such as social and physical stimulus deprivation, poverty, traumatic stress, and prenatal drug exposure, can further compromise brain function in the context of existing liabilities. The relationship between genetic and environmental processes is interactive, fluid, and cumulative in their ability to influence an individual's developmental trajectory and alter subsequent behavioral outcomes. Given the codependent relationship between these processes, brain function is now believed to be malleable via manipulations of the environment in ways that may decrease liability for psychopathology. Research that explores these relationships and ways in which interventions can redirect this developmental track may substantially advance both the science and practice of prevention. Studies attempting to isolate the neurobiological effects of socioenvironmental factors are reviewed, implications for intervention strategies are discussed, and a future research agenda is proposed to provide greater insight into specific brain-environment relationships. Armed with this knowledge, prevention scientists may eventually design programs that directly target these effects to reverse or attenuate negative outcomes.

neurobiology neurotransmitters prevention antisocial behavior drug abuse 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Agid, O., Shapira, B., Zislin, J., Ritsner, M., Hanin, B., Murad, H., Troudart, T., Bloch, M., Heresco-Levy, U., & Lerer, B. (1999). Environment and vulnerability to major psychiatric illness: a case control study of early parental loss in major depression, bipolar disorder and schizophrenia [see comments]. Molecular Psychiatry, 4(2), 163–172.Google Scholar
  2. Albanese, A., Hamill, G., Jones, J., Skuse, D., Matthews, D. R., & Stanhope, R. (1994). Reversibility of physiological growth hormone secretion in children with psychosocial dwarfism. Clinical Endocrinology (Oxf), 40, 687–692.Google Scholar
  3. Allan, A. M. Wu, H., Paxton, L. L., & Savage, D. D. (1998). Prenatal ethanol exposure alters the modulation of the gamma-aminobutyric acidA1 receptor-gated chloride ion channel in adult rat offspring. Journal of Pharmacology and Experimental Therapeutics, 284, 250–257.Google Scholar
  4. Allen, N. B., Lewinsohn, P. M. & Seeley, J. R. (1998). Prenatal and perinatal influences on risk for psychopathology in childhood and adolescence. Developmental Psychopathology, 10, 513–529.Google Scholar
  5. Anisman, H., Zacharia, M. D. Meaney, M. J., and Merali, Z. (1998). Do early-life events permanently alter behavioral and hormonal responses to stressors? International Journal of Developments in Neuroscience, 16, 149–164.Google Scholar
  6. Anisman, H., & Zacharko, R. M. (1986). Behavioral and neurochemical consequences associated with stressors. Annals of the New York Academy of Sciences, 467, 205–225.Google Scholar
  7. Azuma, S. D., & Chasnoff, I. J. (1993). Outcome of children prenatally exposed to cocaine and other drugs: A path analysis of three-year data. Pediatrics, 92, 396–402.Google Scholar
  8. Backon, J. (1989). Etiology of alcoholism: Relevance of prenatal hormonal influences on the brain, anomalous dominance, and neurochemical and pharmacological brain asymmetry. Medical Hypotheses, 29, 59–63.Google Scholar
  9. Bardo, M. T., Donohew, R. L., & Harrington, N. G. (1996). Psychobiology of novelty seeking and drug seeking behavior. Behavior and Brain Research, 77, 23–43.Google Scholar
  10. Battaglia, G., Cabrera, T. M., & Van de Kar, L. D. (1995). Prenatal Neurobiological Research and Prevention 103 cocaine produces biochemical and functional changes in brain serotonin systems in rat progeny.NIDA Research Monograph, 158, 115–148.Google Scholar
  11. Bechara, A., Tranel, D., Damasio, H., & Damasio, A. R. (1996). Failure to respond autonomically to anticipated future outcomes following damage to prefrontal cortex. Cerebral Cortex, 6, 215–225.Google Scholar
  12. Beckham, J. C., Feldman, M. E., Kirby, A. C., Hertzberg, M. A., & Moore, S. D. (1997). Interpersonal violence and its correlates in Vietnam veterans with chronic posttraumatic stress disorder. Journal of Clinical Psychology, 53(8), 859–869.Google Scholar
  13. Benes, F. M. (1997). The role of stress and dopamine-GABA interactions in the vulnerability for schizophrenia. Journal of Psychiatric Research, 31, 257–275.Google Scholar
  14. Botvin, G. J., Baker, E., Dusenbury, L., Botvin, E.M., & Diaz, T. (1995). Long-term follow-up results of a randomized drug abuse prevention trial in a White middle-class population. Journal of the American Medical Association, 273, 1106–1112.Google Scholar
  15. Brennan, P., & Mednick, S. (1997). Medical histories of antisocial individuals In D. Stoff, J., Breiling, & J. Maser (Eds.), Handbook of antisocial behavior. New York: John Wiley & Sons.Google Scholar
  16. Brooks-Gunn, J., McCarton, C., & Hawley, T. (1994). Effects of in utero drug exposure on children's development: Review and recommendations. Archives of Pediatric and Adolescent Medicine, 148, 33–39.Google Scholar
  17. Cabib, S., Oliverio, A., Ventura, R., Lucchese, F., & Puglisi-Allegra, S. (1997). Brain dopamine receptor plasticity: Testing a diathesis-stress hypothesis in an animal model. Psychopharmacology (Berl), 132, 153–160.Google Scholar
  18. Cicchetti, D., Rogosch, F. A., Toth, S. L., & Spagnola, M. (1997). Affect, cognition and the emergency of self-knowledge in the toddler offspring of depressed mothers. Journal of Experimental Child Psychology, 67, 338–362.Google Scholar
  19. Cloninger, C. R., Svrakic, D. M., & Przybeck, T. R. (1993). A psychobiological model of temperament and character. Archives of General Psychiatry, 50, 975–990.Google Scholar
  20. Cohen, D. J. (1992). Tourette's syndrome: Psychopathology of development in a model of neuropsychiatric dysfunction in children. Psychiatrica Enfant, 35, 365–419.Google Scholar
  21. Cools, A. R., & Gingras, M. A. (1998). Nijmegen high and low responders to novelty: A new tool in the search after the neurobiology of drug abuse liability. Pharmacology and Biochemistry of Behavior, 60(1), 151–159.Google Scholar
  22. Damasio, H., Grabowski, T., Frank, R., Galaburda, A. M., & Damasio, A. R. (1994). The return of Phineas Gage: Clues about the brain from the skull of a famous patient. Science, 264, 1102–1104.Google Scholar
  23. Davis, L. L., Suris, A., Lambert, M. T., Heimberg, C., & Petty, F. (1997). Post-traumatic stress disorder and serotonin: new directions for research and treatment. Journal of Psychiatry Neuroscience, 22(5), 318–326.Google Scholar
  24. De Bellis, M. D., Burke, L., Trickett, P. K., & Putnam, F. W. (1996). Antinuclear antibodies and thyroid function in sexually abused girls. Journal of Traumatic Stress, 9(2), 369–378.Google Scholar
  25. De Bellis, M. D., Chrousos, G. P., Dorn, L. D., Burke, L., Helmers, K., Kling, M. A., Trickett, P. K., & Putnam, F. W. (1994). Hypothalamic-pituitary-adrenal axis dysregulation in sexually abused girls. Journal of Clinical Endocrinology and Metabolism, 78, 249–255.Google Scholar
  26. De Goeij, D. C., Dijkstra, H., & Tilders, F. J. (1992). Chronic psychosocial stress enhances vasopressin, but not corticotropin-releasing factor, in the external zone of the median eminence of male rats: Relationship to subordinate status. Endocrinology, 131(2), 847–853.Google Scholar
  27. Dinan, T. G. (1996). Serotonin: Currentunderstanding and the way forward. International Clinical Psychopharmacology, 11 (Suppl 1), 19–21.Google Scholar
  28. Donohew, L., Palmgreen, P., & Lorch, E. P. (1994). Attention, need for sensation and health communication campaigns. American Behavioral Scientist, 38, 310–322.Google Scholar
  29. Dunn, H. G., McBurney, A. K., Ingram, S., & Hunter, C. M. (1977). Maternal cigarette smoking during pregnancy and the child's subsequent development: II. Neurological and Intellectual maturation to the age of 6 1/2 years. Canadian Journal of Public Health, 68, 43–50.Google Scholar
  30. Eggert, L. L., Thompson, E. A., Herting, J. R., Nicholas, L. J., & Dicker, B. G. (1994). Preventing adolescent drug abuse and high school dropout through an intensive school-based social network development program. American Journal of Health Promotion, 8(3), 202–215.Google Scholar
  31. Famy, C., Streissguth, A. P., & Unis. A. S. (1998). Mental illness in adults with fetal alcohol syndrome or fetal alcohol effects. American Journal of Psychiatry, 155, 552–554.Google Scholar
  32. Fichtner, C. G., O'Connor, F. L., Yeoh, H. C., Arora, R. C., & Crayton, J. W. (1995). Hypodensity of platelet serotonin uptake sites in posttraumatic stress disorder: Associated clinical features. Life Sciences, 57(2), PL37–PL44.Google Scholar
  33. Field, T. M., Scafidi, F., Pickens, R., Prodromidis, M., Pelaez-Nogueras, M., Torquati, J., Wilcox, H., Malphurs, J., Schanberg,& Kuhn, C. (1998). Polydrug-using adolescent mothers and their infants receiving early intervention. Adolescence, 33(129), 117–143.Google Scholar
  34. Fishbein, D. H. (1998). Differential susceptibility to comorbid drug abuse and violence. Journal of Drug Issues, 28(4).Google Scholar
  35. Frith, C., & Dolan, R. J. (1997). Brain mechanisms associated with top-down processes in perception. Philosophical Transactions of the Royal Society of London B Biological Sciences, 352, 1221–1230.Google Scholar
  36. Gerra, G., Caccavari, R., Delsignore, R., Passeri, M., Fertonani Affini, G., Maestri, D., Monica, C., & Brambilla, F. (1993). Parental divorce and neuroendocrine changes in adolescents. Acta Psychiatr Scandanavia, 87(5), 350–354.Google Scholar
  37. Gerra, G., Zaimovic, A., Giucastro, G., Folli, F., Maestri, D., Tessoni, A., Avanzini, P., Caccavari, R., Bernasconi, S., & Brambilla, F. (1998). Neurotransmitter-hormonal responses to psychological stress in peripubertal subjects: relationship to aggressive behavior. Life Sciences, 62(7), 617–625.Google Scholar
  38. Giacoia, G. P. (1990). Cocaine in the cradle: A hidden epidemic. Southern Medical Journal, 83, 947–951.Google Scholar
  39. Giancola, P. R. (2000). Neuropsychological Functioning and Antisocial Behavior: Implications for Etiology and Prevention. In D. Fishbein (Ed.), The science, treatment and prevention of antisocial behavior. New Jersey: Civic Research Institute, pp. 11-1–11-13.Google Scholar
  40. Glover, V. (1997). Maternal stress or anxiety in pregnancy and emotional development of the child. British Journal of Psychiatry, 171, 105–106.Google Scholar
  41. Goodman, S. H., & Gotlib, I. H. (1999). Risk for psychopathology in the children of depressed mothers:A developmental model for understanding mechanisms of transmission. Psychology Review, 106, 458–490.Google Scholar
  42. Gorio, A., Germani, E., Mantegazza, P., Di Giulio, A. M., Bertelli, A. (1992). Perinatal exposure to ethanol affects postnatal degeneration and regeneration of serotonergic pathways in the spinal cord. Drugs Experimental and Clinical Research, 18, 461–464.Google Scholar
  43. Graeff, F. G., Guimaraes, F. S., De Andrade, T. G., & Deakin, J. F. (1996). Role of 5-HT in stress, anxiety, and depression. Pharmacology and Biochemistry of Behavior, 54, 129–141.Google Scholar
  44. Guerra, C. (1998) Neuroanatomical and neurophysiological mechanisms involved in central nervous system dysfunctions induced by prenatal alcohol exposure. Alcohol Clinical and Experimental Research, 22, 304–312.Google Scholar
  45. Gust, D. A., Gordon, T. P., Wilson, M. E., Ahmed-Ansari, A., Brodie, A. R., McClure, H. M. (1991). Formation of a new social group of unfamiliar female rhesus monkeys affects the Fishbein immune and pituitary adrenocortical systems. Brain Behavioral Immunology, 5, 296–307.Google Scholar
  46. Hawkins, D., & Catalano, R. (1995). Preventing substance abuse. In M. Tonry, & Farrington, D. (Eds.), Crime and justice: A eview of research (Vol. 19). Building a safer society: Strategic pproaches to crime prevention. Chicago: University of Chicago Press.Google Scholar
  47. Henry, C., Guegant, G., Cador, M., Arnauld, E., Arsaut, J., LeMoal, M., & Demotes-Mainard, J. (1995). Prenatal stress n rats facilitates amphetamine-induced sensitization and induces ong-lasting changes in dopamine receptors in the nucleus ccumbens. Brain Research, 685, 179–186.Google Scholar
  48. Higley, J. D., Suomi, S. J., & Linnoila, M. (1991). SF monoamine etabolite concentrations vary according to age, rearing, and sex, and are influenced by the stressor of social separation in rhesus monkeys. Psychopharmacology (Berl), 103(4), 551–556.Google Scholar
  49. Hofkosh, D., Pringle, J. L., Wald, H. P., Switala, J., et al. (1995). Early interactions between drug-involved mothers and infants: Within-group differences. Archives of Pediatric and Adolescent Medicine, 149, 665–672.Google Scholar
  50. Holsboer, F. (1989). Psychiatric implications of altered limbichypothalamic-pituitary-adrenocortical activity. European Archives of Psychiatry and Neurological Sciences, 238(5-6), 302–22.Google Scholar
  51. Horger, B. A., & Roth, R. H. (1996). The role of mesoprefrontal dopamine neurons in stress. Critical Reviews in Neurobiology, 10, 395–418.Google Scholar
  52. Howard, S. G., & Takeda, H. (1990). Effect of prenatal exposure to phencyclidine on the postnatal development of the cholinergic system in the rat. Developmental Neuroscience, 12, 204–209.Google Scholar
  53. Ito, Y., Teicher, M. H., Glod, C. A., Harper, D., Magnus, E., Gelbard, H. A. (1993). Increased prevalence of electrophysiological abnormalities in children with psychological, physical, and sexual abuse. Journal of Neuropsychiatry and Clinical Neuroscience, 5(4), 401–408.Google Scholar
  54. Ito, Y., Teicher, M. H., Glod, C. A., Ackerman, E. (1998). Preliminary evidence for aberrant cortical development in abused children: Aquantitative EEG study. Journal of Neuropsychiatry and Clinical Neuroscience, 10(3), 298–307.Google Scholar
  55. Joseph, R. (1999). Environmental influences on neural plasticity, the limbic system, emotional development and attachment: A review. Child Psychiatry and Human Development, 29, 189–208.Google Scholar
  56. Kandel, E., & Freed, D. (1989). Frontal-lobe dysfunction and antisocial behavior: A review. Journal of Clinical Psychology, 45, 404–413.Google Scholar
  57. Kaufer, D., Friedman, A., Seidman, S., & Soreq, H. (1998). Acute stress facilitates long-lasting changes in cholinergic gene expression. Nature, 393, 373–377.Google Scholar
  58. Kaufman, J., Birmaher, B., Perel, J., Dahl, R. E., Moreci, P., Nelson, B., Wells, W., & Ryan, N. D. (1997). The corticotropin-releasing hormone challenge in depressed abused, depressed nonabused, and normal control children. Biological Psychiatry, 42, 669–679.Google Scholar
  59. Kempermann, G., Kuhn, H. G., & Gage, F. H. (1998). Experience induced neurogenesis in the senescent dentate gyrus. Journal of Neuroscience, 18(9), 3206–3212.Google Scholar
  60. Klintsova, A. Y., Matthews, J. T., Goodlett, C. R., Napper, R. M.,& Greenough, W. T. (1997). Therapeutic motor training increases parallel fiber synapse number per Purkinje neuron in cerebellar cortex of rats given postnatal binge alcohol exposure: Preliminary report. Alcoholism in Clinical and Experimental Research, 21(7), 1257–1263.Google Scholar
  61. Kraemer, G. W., Ebert, M. H, Schmidt, D. E., & McKinney, W. T. (1989). A longitudinal study of the effect of different social rearing conditions on cerebrospinal fluid norepinephrine and biogenic amine metabolites in rhesus monkeys. Neuropsychopharmacology, 2(3), 175–189.Google Scholar
  62. Kuhn, C. M., & Schanberg, S. M. (1998). Responses to maternal separation: Mechanisms and mediators. International Journal of Developmental Neuroscience, 16, 261–270.Google Scholar
  63. Legido, A. (1997). Intrauterine exposure to drugs. Reviews in Neurology, 25, 691–702.Google Scholar
  64. Lemieux, A. M., & Coe, C. L. (1995). Abuse-related posttraumatic stress disorder: evidence for chronic neuroendocrine activation in women. Psychosomatic Medicine, 57, 105–115.Google Scholar
  65. Lewis, D. O. (1992). From abuse to violence: Psychophysiological consequences of maltreatment. Journal of the American Academy of Child and Adolescent Psychiatry, 31, 383–391.Google Scholar
  66. Lorch, E. P., Palmgreen, P., Donohew, L., Helm, D., Baer, S., & D'Silva, M. (1994). Program context, sensation seeking and attention to televised anti-drug public service announcements. Human Communication Research, 20, 390–412.Google Scholar
  67. Lou, H. C., Hansen, D., Nordenfoft, M., Pryds, O., Jensen, F., Nim, J., & Hemmingsen, R. (1994). Prenatal stressors of human life affect fetal brain development. Developmental Medicine and Child Neurology, 36, 826–832.Google Scholar
  68. Mayes, L. C. (1999). Addressing mental health needs of infants and young children. Child and Adolescent Psychiatric Clinics of North America, 8, 209–224.Google Scholar
  69. McEwen, B. S. (1997). Possible mechanisms for atrophy of the human hippocampus. Molecular Psychiatry, 2, 255–262.Google Scholar
  70. McEwen, B. S., Albeck, D., Cameron, H., Chao, H. M., Gould, E., Hastings, N., Kuroda, Y., Luine, V., Magarinos, A. M., & McKittrick, C. R., (1995). Stress and the brain: A paradoxical role for adrenal steroids. Vitamins and Hormones, 51, 371–402.Google Scholar
  71. McGuire, S., Neiderhiser, J. M., Reiss, D., Hetherington, E. M., & Plomin, R. (1994). Genetic and environmental influences on perceptions of self-worth and competence in adolescence: A study of twins, full siblings, and step-siblings. Child Development, 65, 785–799.Google Scholar
  72. McIntosh, D. E., Mulkins, R. S., & Dean, R. S. (1995). Utilization of maternal perinatal risk indicators in the differential diagnosis of ADHD and UADD children. International Journal of Neuroscience, 81, 35–46.Google Scholar
  73. Maxfield, M. G., & Widom, C. S. (1996). The cycle of violence. Revisited 6 years later. Archives of Pediatric and Adolescent Medicine, 150(4), 390–395.Google Scholar
  74. Mayes, L. C., Granger, R. H., Frank, M. A., Schottenfeld, R., & Bornstein, M. H. (1993). Neurobehavioral profiles of neonates exposed to cocaine prenatally. Pediatrics, 91, 778–783.Google Scholar
  75. Meaney, M. J. & Aitken, D. H. (1985). The effects of early postnatal handling on hippocampal glucocorticoid receptor concentrations: Temporal parameters. Brain Research, 354, 301–304.Google Scholar
  76. Meaney, M. J., Diorio, J., Francis, D., Widdowson, J., LaPlante, P., Caldji, C., Sharma, S., Seckl, J. R., & Plotsky P. M. (1996). Early environmental regulation of forebrain glucocorticoid receptor gene expression: implications for adrenocortical responses to stress. Developmental Neuroscience, 18(1-2), 49–72.Google Scholar
  77. Meaney, M. J., Mitchell, J. B., Aitken, D. H., Bhatnagar, S., Bodnoff, S. R., Iny, L. J., & Sarrieau, A. (1991). The effects of neonatal handling on the development of the adrenocortical response to stress: Implications for neuropathology and cognitive deficits in later life. Psychoneuroendocrinology, 16, 85–103.Google Scholar
  78. Milberger, S., Biederman, J., Faraone, S. V., Chen, L., & Jones, J. (1996). Is maternal smoking during pregnancy a risk factor for attention deficit hyperactivity disorder in children? American Journal of Psychiatry, 153, 1138–1142.Google Scholar
  79. Milberger, S., Biederman, J., Faraone, S. V., Chen, L., & Jones, J. (1997). Further evidence of an association between attention deficit/ hyperactivity disorder and cigarette smoking. Findings from a high-risk sample of siblings. American Journal of Addiction, 6, 205–217.Google Scholar
  80. Moffitt, T. E. (1993). Adolescence-limited and life-course-persisNeurobiological Research and Prevention 105 sent antisocial behavior:Adevelopmental taxonomy. Psychology Review, 100(4), 674–701.Google Scholar
  81. Moffitt, T. E., Caspi, A., Harkness, A. R., & Silva, P. A. (1993). The natural history of change in intellectual performance: who changes? How much? Is it meaningful? Journal of Child Psychology and Psychiatry, 34(4), 455–506.Google Scholar
  82. Mott, S. H., Packer, R. J., & Soldin, S. J. (1993). Neurologic manifestations of cocaine exposure in childhood. Pediatrics, 92, 557–560.Google Scholar
  83. Nakamura, H., Kobayashi, S., Ohashi, Y., & Ando, S. (1999). Agechanges of brain synapses and synaptic plasticity in response to an enriched environment. Journal of Neuroscience Research, 56, 307–315.Google Scholar
  84. Navarro, H. A., Seidler, F. J., Eylers, J. P., Baker, F. E., Dobbins, S. S., Lappi, S. E., & Slotkin, T. A. (1989). Effects of prenatal nicotine exposure on development of central and peripheral cholinergic neurotransmitter systems. Evidence for cholinergic trophic influences in developing brain. Journal of Pharmacology and Experimental Therapeutics, 251, 894–900.Google Scholar
  85. Oates, R. K., Forrest, D., & Peacock, A. (1985). Self-esteem of abused children. Child Abuse and Neglect, 9, 159–163.Google Scholar
  86. O'Connor, T. G., Deater-Deckard, K., Fulker, D., Rutter, M., & Plomin, R. (1998b). Genotype-environment correlations in late childhood and early adolescence: Antisocial behavioral problems and coercive parenting. Developmental Psychology, 34, 970–981.Google Scholar
  87. O'Connor, T. G., Reiss, D., McGuire, S., & Hetherington, E. M. (1998a). Co-occurrence of depressive symptoms and antisocial behavior in adolescence: A Common genetic liability. Journal of Abnormal Psychology, 107, 27–37.Google Scholar
  88. Olds, D., Henderson, C. R., Cole, R., Eckenrode, J., Kitzman, H., Luckey, D., Pettitt, L., Sidora, K., Morris, P., & Powers, J. (1998). Long-term effects of nurse home visitation on children's criminal and antisocial behavior: 15-year follow-up of a randomized controlled trial. Journal of the American Medical Association, 280, 1238–1244.Google Scholar
  89. Orlebeke, J. F., Knol., D. L., & Verhulst, F. C. (1997). Increase in child behavior problems resulting from maternal smoking during pregnancy. Archives of Environmental Health, 52, 317–321.Google Scholar
  90. Palmgreen, P., Lorch, E. P., Donohew, L., Harrington, N. G., D'Silva, M., & Helm, D. (1994). Reaching at-risk populations in a mass media drug abuse prevention campaign: Sensation seeking as a targeting variable. Drugs and Society, 8, 29–45.Google Scholar
  91. Passig, C., Pinto-Hamuy, T., Moreno, J. P., Rodriquez, C., Rojas, C., & Rosas, R. (1996). Persistence of the cognitive effects of early stimulation assessed with an animal model. Reviews of Medicine in Chile, 124, 409–416.Google Scholar
  92. Pham, T. M., Soderstrom, S., Henriksson, B. G., & Mohammed, A. H. (1997). Effects of neonatal stimulation on later cognitive function and hippocampal nerve growth factor. Behavioral Brain Research, 86, 113–120.Google Scholar
  93. Phillips, T. J., Roberts, A. J., & Lessov, C. N. (1997). Behavioral sensitization to ethanol: Genetics and the effects of stress. Pharmacology and Biochemistry of Behavior, 57, 487–493.Google Scholar
  94. Piazza, P. V., & Le Moal, M. L. (1996). Pathophysiological basis of vulnerability to drug abuse: Role of an interaction between stress, glucocorticoids and dopaminergic neurons. Annual Reviews in Pharmacology and Toxicology, 36, 359–378.Google Scholar
  95. Piazza, P. V., & Le Moal, M. L. (1998). The role of stress in drug self-administration. Trends in the Pharmacological Sciences, 19, 67–74.Google Scholar
  96. Pike, A., Hetherington, E. M., Reiss, D., & Plomin, R. (1996). Using MZ differences in the search for nonshared environmental effects. Journal of Child Psychology and Psychiatry, 37, 695–704.Google Scholar
  97. Pine, D. S., Coplan, J. D., Wasserman, G. A., Miller, L. S., Fried, J. E., Davies, M., Cooper T. B., Greenhill, L., Shaffer, D., & Parsons, B. (1997). Neuroendocrine response to fenfluramine challenge in boys. Associations with aggressive behavior and adverse rearing. Archives of General Psychiatry, 54(9), 39–846.Google Scholar
  98. Pine, D. S., Wasserman, G. A., Coplan, J., Fried, J. A., Huang, Y., Kassir, S., Greenhill, L., Shaffer, D., & Parsons, B. (1996). Platelet serotonin 2A (5-HT2A) receptor characteristics nd parenting factors for boys at risk for delinquency: a preliminary report. American Journal of Psychiatry, 153(4), 538–544.Google Scholar
  99. Piquero, A. & Tibbetts, S. G. (1999). The impact of pre/perinatal disturbances and disadvantaged familial environment in predicting criminal offending. Studies on Crime and Crime Prevention, 8, 52–70.Google Scholar
  100. Post, R. M. (1992). Transduction of psychosocial stress into the neurobiology of recurrent affective disorder. American Journal of Psychiatry, 149, 999–1010.Google Scholar
  101. Post, R. M., & Weiss, S. R. (1997). Emergent properties of neural systems: How focal molecular neurobiological alterations can affect behavior. Developmental Psychopathology, 9(4), 907–929.Google Scholar
  102. Popoua, E. I., Mikheev, V. F., Shuvaey V. T., Ivonin, A. A., & Chernyakov, G. M. (1998). Functional rearrangements in the human brain during emotional self-regulation with biological feedback. Neuroscience and Behavioral Physiology, 28(1), 8–16.Google Scholar
  103. Raine, A. (1993). The psychopathology of crime: Criminal behavior as a clinical disorder. San Diego: Academic Press.Google Scholar
  104. Raine, A., Brennan, P., Farrington, D. P., & Mednick, S. A. (1997a). Biosocial bases of violence. New York: Plenum Press.Google Scholar
  105. Rantakallio, P., Laara, E., Isohanni, M., & Moilanen, I. (1992). Maternal smoking during pregnancy and delinquency of the offspring: An association without causation? International Journal of Epidemiology, 21, 1106–1113.Google Scholar
  106. Reiss, D., Hetherington, E. M., Plomin, R., Howe, G. W., Simmens, S. J., Henderson, S. H., O'Connor, T. J., Bussell, D. A., Anderson, E. R., & Law, T. (1995). Genetic questions for environmental studies: Differential parenting and psychopathology in adolescence. Archives of General Psychiatry, 52, 925–936.Google Scholar
  107. Risch, S. C. (1997). Recent advances in depression research: from stress to molecular biology and brain imaging. Journal of Clinical Psychiatry, 58 (Suppl 5) 3–6.Google Scholar
  108. Rosenblum, L. A., & Andrews, M. W. (1994). Influences of environmental demand on maternal behavior and infant development. Acta Paediatrica Supplement, 397, 57–63.Google Scholar
  109. Roughton, E. C., Schneider, M. L., Bromley, L. J., & Coe, C. L. (1998). Maternal endocrine activation during pregnancy alters neurobehavioral state in primate infants. American Journal of Occupational Therapy, 52, 90–98.Google Scholar
  110. Ryan, N. D. (1998). Psychoneuroendocrinology of children and adolescents. Psychiatric Clinics of North America, 21(2), 435–441.Google Scholar
  111. Sapolsky, R. M. (1989). Hypercortisolism among socially subordinate wild baboons originates at the CNS level. Archives of General Psychiatry, 46(11), 1047–1051.Google Scholar
  112. Sapolsky, R. M. (1996). Why stress is bad for your brain. Science, 273(5276), 749–750.Google Scholar
  113. Sapolsky, R. M., & Mott, G. E. (1987). Social subordinance in wild baboons is associated with suppressed high density lipoprotein-cholesterol concentrations: The possible role of chronic social stress. Endocrinology, 121(5), 1605–10.Google Scholar
  114. Schwartz, M. L., & Goldman-Rakic, P. (1990). Development and plasticity of the primate cerebral cortex. Clinical Perinatology, 17(1), 83–102.Google Scholar
  115. Seidler, F. J.,& Slotkin, T. A. (1992). Fetal cocaine exposure causes ersistent noradrenergic hyperactivity in rat brain regions: ffects on neurotransmitter turnover and receptors. Journal f Pharmacology and Experimental Therapeutics, 263, 13–421.Google Scholar
  116. Senba, E., & Ueyama, T. (1997). Stress-induced expression of 106 Fishbein immediate early genes in the brain and peripheral organs of the rat. Neuroscience Research, 29, 183–207.Google Scholar
  117. Shin, L. M., McNally, R. J., Kosslyn, S. M., Thompson, W. L., Rauch, S. L., Alpert, N. M., Metzger, L. J., Lasko, N. B., Orr, S. P., & Pitman, R. K. (1997). A positron emission tomographic study of symptom provocation in PTSD. Annals of the New York Academy of Sciences, 821, 521–523.Google Scholar
  118. Siegel, S. J., Ginsberg, S. D., Hof, P. R., Foote, S. L., Young, W. G., Kraemer, G. W., McKinney, W. T., & Morrison, J. H. (1993). Effects of social deprivation in prepubescent rhesus monkeys: Immunohistochemical analysis of the neurofilament protein triplet in the hippocampal formation. Brain Research, 619(1-2), 299–305.Google Scholar
  119. Slotkin, T. A. (1998). Fetal nicotine or cocaine exposure: Which one is worse? Journal of Pharmacology and Experimental Therapeutics, 285, 931–945.Google Scholar
  120. Smith, M. A. (1996). Hippocampal vulnerability to stress and aging: possible role of neurotrophic factors. Behavioral Brain Research, 78(1), 25–36.Google Scholar
  121. Smith, M. A., Kim, S. Y., Van Oers, H. J., & Levine, S. (1997). Maternal deprivation and stress induce immediate early genes in the infant rat brain. Endocrinology, 138, 4622–4628.Google Scholar
  122. Southwick, S. M., Krystal, J. H., Bremner, J. D., Morgan, C. A. 3rd, Nicolaou, A. L., Nagy, L. M., Johnson, D. R., Heninger, G. R., & Charney, D. S. (1997). Noradrenergic and serotonergic function in posttraumatic stress disorder. Archives of General Psychiatry, 54(8), 749–758Google Scholar
  123. Spoth, R., Redmond, C., & Shin, C. (1998). Direct and indirect latent-variable parenting outcomes of two universal familyfocused preventive interventions: Extending a public healthoriented research base. Journal of Consulting and Clinical Psychology, 66, 385–399.Google Scholar
  124. Stabenau, J. R. (1977). Genetic and other factors in schizophrenic, manic-depressive, and schizo-affective psychoses. Journal of Nervous and Mental Disorders, 164(3), 149–167.Google Scholar
  125. Stein, M. B., Koverola, C., Hanna, C., Torchia, M. G., & McClarty, B. (1997). Hippocampal volume in women victimized by childhood bsexual abuse. Psychological Medicine, 27(4), 951–959.Google Scholar
  126. Stein, M. B., Yehuda, R., Koverola, C., & Hanna, R. (1997). Enhanced dexamethasone suppression of plasma cortisol in adult women traumatized by childhood sexual abuse. Biological Psychiatry, 42, 680–686.Google Scholar
  127. Stokes, P. E. (1995). The potential role of excessive cortisol induced by HPA hyperfunction in the pathogenesis of depression. European Neuropsychopharmacology, 5 (Suppl), 77–82.Google Scholar
  128. Stressguth, A. P., Aase, J. M., Clarren, S. K., Randels, S. P., LaDue, R. A.,& Smith, D. F. (1991). Fetal alcohol syndrome in adolescents and adults. Journal of the American Medical Association, 265, 1961–1967.Google Scholar
  129. Tajuddin, N. & Druse, J. J. (1988). Chronic maternal ethanol consumption results in decreased serotonergic 5-HT1 sites in cerebral cortical regions from offspring. Alcohol, 5, 465–470.Google Scholar
  130. Taylor, E. (1998). Clinical foundations of hyperactivity research. Behavioral Brain Research, 94, 11–24.Google Scholar
  131. Teicher, M. H., Ito, Y., Glod, C. A., Andersen, S. L., Dumont, N., & Ackerman, E. (1997). Preliminary evidence for abnormal cortical development in physically and sexually abused children using EEG coherence and MRI. Annals of the New York Academy of Sciences, 821, 160–175.Google Scholar
  132. Thompson, E. A., Horn, M., Herting, J. R., & Eggert, L. L. (1997). Enhancing outcomes in an indicated drug prevention program for high-risk youth. Journal of Drug Education,27(1), 19–41.Google Scholar
  133. Tizabi, Y., Popke, E. J., Rahman, M. A., Nespor, S. M., & Grunberg, N. E. (1997). Hyperactivity induced by prenatal nicotine exposure is associated with an increase in cortical nicotinic receptors. Pharmacology and Biochemistry of Behavior, 58, 141–146.Google Scholar
  134. Uno, H., Eisele, S., Sakai, A., Shelton, S., Baker, E., DeJesus, O., & Holden, J. (1994). Neurotoxicity of glucocorticoids in the primate brain. Hormones and Behavior, 28, 336–348.Google Scholar
  135. van der Kolk, B. A. (1997). The psychobiology of posttraumatic stress disorder. Journal of Clinical Psychiatry, 58 (Suppl 9), 16–24.Google Scholar
  136. van Os, J., & Selten, J. P. (1998). Prenatal exposure to maternal stress and subsequent schizophrenia. The May 1940 invasion of The Netherlands. British Journal of Psychiatry, 172, 324–326.Google Scholar
  137. Virgin, C. E. Jr, & Sapolsky, R. M. (1997). Styles of male social behavior and their endocrine correlates among low-ranking baboons. American Journal of Primatology, 42(1), 25–39.Google Scholar
  138. Volavka, J. (1995). Neurobiology of violence. Washington, D. C.: American Psychiatric Press.Google Scholar
  139. Voss, L. D., Mulligan, J., & Betts, P. R. (1998). Short stature at school entry–An index of social deprivation? (The Wessex Growth Study). Child Care and Health Development, 24, 145–156.Google Scholar
  140. Wakschlag, L. S., Lahey, B. B., Loeber, R., Green, S. M., Gordon, J. R. A., & Leventhal, B. L. (1997). Maternal smoking during pregnancy and the risk of conduct disorder in boys. Archives of General Psychiatry, 54(7), 670–676.Google Scholar
  141. Ward, A. J. (1991). Prenatal stress and childhood psychopathology. Child Psychiatry and Human Development, 22, 97–110.Google Scholar
  142. Webster-Stratton, C., & Hammond, M. (1997). Treating children with early-onset conduct problems: A comparison of child and parent training interventions. Journal of Consulting and Clinical Psychology, 65, 93–109.Google Scholar
  143. Weisglas-Kuperus, M. N., Baerts, W., Smrkovsky, M., & Sauer, P. J. (1993). Effects of biological and social factors on the cognitive development of very low birth weight children. Pediatrics, 92, 658–665.Google Scholar
  144. West, J. R., Goodlett, C. R., & Brandt, J. P. (1990). New approaches to research on the long-term consequences of prenatal exposure to alcohol. Alcoholism: Clinical and Expermental Research, 14, 684–689.Google Scholar
  145. Wilson, B. A. (1997). Cognitive rehabilitation: How it is and how it might be. Journal of the International Neuropsychological Society, 3, 487–196.Google Scholar
  146. Young, D., Lawlor, P. A., Leone, P., Dragunow, M., & During, M. J. (1999). Environmental enrichment inhibits spontaneous apoptosis, prevents seizures, and is neuroprotective. Nature in Medicine 5, 448–453.Google Scholar

Copyright information

© Society for Prevention Research 2000

Authors and Affiliations

  • Diana Fishbein
    • 1
  1. 1.Transdisciplinary Behavioral Science ProgramResearch Triangle InstituteRockville

Personalised recommendations