Autonomous Agents and Multi-Agent Systems

, Volume 3, Issue 2, pp 185–207 | Cite as

Algorithms for Distributed Constraint Satisfaction: A Review

  • Makoto Yokoo
  • Katsutoshi Hirayama
Article

Abstract

When multiple agents are in a shared environment, there usually exist constraints among the possible actions of these agents. A distributed constraint satisfaction problem (distributed CSP) is a problem to find a consistent combination of actions that satisfies these inter-agent constraints. Various application problems in multi-agent systems can be formalized as distributed CSPs. This paper gives an overview of the existing research on distributed CSPs. First, we briefly describe the problem formalization and algorithms of normal, centralized CSPs. Then, we show the problem formalization and several MAS application problems of distributed CSPs. Furthermore, we describe a series of algorithms for solving distributed CSPs, i.e., the asynchronous backtracking, the asynchronous weak-commitment search, the distributed breakout, and distributed consistency algorithms. Finally, we show two extensions of the basic problem formalization of distributed CSPs, i.e., handling multiple local variables, and dealing with over-constrained problems.

constraint satisfaction search distributed AI 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Armstrong, and E. H. Durfee, “Dynamic prioritization of complex agents in distributed constraint satisfaction problems”, in Proc.15th Int.Joint Conf.Artif.Intell., 1997, pp. 620–625.Google Scholar
  2. 2.
    P. Cheeseman, B. Kanefsky, and W. Taylor, “Where the really hard problems are”, in Proc.12th Int. Joint Conf.Artif.Intell., 1991, pp. 331–337.Google Scholar
  3. 3.
    Z. Collin, R. Dechter, and S. Katz, “On the feasibility of distributed constraint satisfaction”, in Proc. 12th Int.Joint Conf.Artif.Intell., 1991, pp. 318–324.Google Scholar
  4. 4.
    S. E. Conry, K. Kuwabara, V. R. Lesser, and R. A. Meyer, “Multistage negotiation for distributed constraint satisfaction”,. IEEE Trans.Syst.Man Cybern. Vol. 21, pp. 1462–1477, 1991.Google Scholar
  5. 5.
    J. de Kleer, “A comparison of ATMS and CSP techniques”, in Proc.11th Int.Joint Conf.Artif.Intell., 1989, pp. 290–296.Google Scholar
  6. 6.
    R. Dechter, “Constraint networks”, in S. C. Shapiro, ed., Encyclopedia of Artificial Intelligence, Wiley-Interscience: New York, 1992, pp. 276–285.Google Scholar
  7. 7.
    J. Doyle, “A truth maintenance system”,. Artif.Intell. Vol. 12, pp. 231–272, 1979.Google Scholar
  8. 8.
    E. C. Freuder, “Synthesizing constraint expressions”,. Communi.ACM Vol. 21, pp. 958–966, 1978.Google Scholar
  9. 9.
    E. C. Freuder, and R. J. Wallace, “Partial constraint satisfaction”,. Artif.Intell. Vol. 58, pp. 21–70, 1992.Google Scholar
  10. 10.
    K. Ghedira, “A distributed approach to partial constraint satisfaction problems”, in J. W. Perram and J.-P. Müller, eds., Distributed Software Agents and Applications, Lecture Notes in Computer Science 1069, Springer-Verlag: New York, 1994, pp. 106–122.Google Scholar
  11. 11.
    K. Ghedira, and G. Verfaillie, “A multi-agent model for the resource allocation problem: A reactive approach”, in Proc.10th Euro.Conf.Artif.Intell., 1992, pp. 252–254.Google Scholar
  12. 12.
    K. Hirayama and M. Yokoo, “Distributed partial constraint satisfaction problem”, in Proc.3rd Int. Conf.Principles and Practice of Constraint Programming (CP-97), Lecture Notes in Computer Science 1330, 1997, pp. 222–236.Google Scholar
  13. 13.
    M. N. Huhns and D. M. Bridgeland, “Multiagent truth maintenance”,. IEEE Trans.Syst.Man Cybernet. Vol. 21, pp. 1437–1445, 1991.Google Scholar
  14. 14.
    J.-S. Liu and K. P. Sycara, “Multiagent coordination in tightly coupled task scheduling”, in Proc.2nd Int.Conf.Multi-Agent Syst., 1996, pp. 181–188.Google Scholar
  15. 15.
    A. K. Mackworth, “Constraint satisfaction”, in S. C. Shapiro, ed., Encyclopedia of Artificial Intelligence, Wiley-Interscience: New York, 1992, pp. 285–293.Google Scholar
  16. 16.
    C. Mason and R. Johnson, “DATMS: A framework for distributed assumption based reasoning”, in L. Gasser and M. Huhns, eds., Distributed Artificial Intelligence, Morgan Kaufmann: San Francisco, 1989, pp. 293–318.Google Scholar
  17. 17.
    S. Minton, M. D. Johnston, A. B. Philips, and P. Laird, “Minimizing conflicts: A heuristic repair method for constraint satisfaction and scheduling problems”,. Artif.Intell. Vol. 58, pp. 161–205, 1992.Google Scholar
  18. 18.
    P. Morris, “The breakout method for escaping from local minima”, in Proc.11th Nat.Conf.Artif. Intell., 1993, pp. 40–45.Google Scholar
  19. 19.
    P. Prosser, C. Conway, and C. Muller, “A constraint maintenance system for the distributed allocation problem”,. Intell.Syst.Eng. Vol. 1, pp. 76–83, 1992.Google Scholar
  20. 20.
    G. Solotorevsky and E. Gudes, “Solving a real-life time tabling and transportation problem using distributed CSP techniques”, in Proc.CP '96 Workshop Constraint Programming Applications, 1996, pp. 123–131.Google Scholar
  21. 21.
    K. P. Sycara, S. Roth, N. Sadeh, and M. S. Fox, “Distributed constrained heuristic search”,. IEEE Trans.Syst.Man Cybernet. Vol. 21, pp. 1446–1461, 1991.Google Scholar
  22. 22.
    E. Tsang, Foundations of Constraint Satisfaction, Academic Press: New York, 1993.Google Scholar
  23. 23.
    M. Yokoo, “Constraint relaxation in distributed constraint satisfaction problem”, in 5th Int.Conf. Tools with Artif.Intell., 1993, pp. 56–63.Google Scholar
  24. 24.
    M. Yokoo, “Weak-commitment search for solving constraint satisfaction problems”, in Proc.12th Nat.Conf.Artif.Intell., 1994, pp. 313–318.Google Scholar
  25. 25.
    M. Yokoo, “Asynchronous weak-commitment search for solving distributed constraint satisfaction problems”, in Proc.First Int.Conf.Principles and Practice of Constraint Programming (CP-95), Lecture Notes in Computer Science 976, 1995, pp. 88–102.Google Scholar
  26. 26.
    M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara, “Distributed constraint satisfaction for formalizing distributed problem solving”, in Proc.12th IEEE Int.Conf.Distributed Comput.Syst., 1992, pp. 614–621.Google Scholar
  27. 27.
    M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara, “The distributed constraint satisfaction problem: formalization and algorithms”,. IEEE Trans.Knowledge Data Eng., Vol. 10, pp. 673–685, 1998.Google Scholar
  28. 28.
    M. Yokoo and K. Hirayama, “Distributed constraint satisfaction algorithm for complex local problems”, in Proc.3rd Int.Conf.on Multi-Agent Syst., 1998.Google Scholar
  29. 29.
    M. Yokoo, T. Ishida, and K. Kuwabara, “Distributed constraint satisfaction for DAI problems”, in 10th Int.Workshop Distributed Artif.Intell., 1990.Google Scholar
  30. 30.
    Y. Zhang and A. Mackworth, “Parallel and distributed algorithms for_nite constraint satisfaction problems”, in Proc.3rd IEEE Symp.Parallel and Distributed Processing, 1991, pp. 394–397.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Makoto Yokoo
    • 1
  • Katsutoshi Hirayama
    • 2
  1. 1.NTT Communication Science LaboratoriesKyotoJapan
  2. 2.Kobe University of Mercantile MarineKobeJapan

Personalised recommendations