Resistance to Thyroid Hormone

  • Roy E. Weiss
  • Samuel Refetoff
resistance thyrotropin thyroxine receptor mutation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Refetoff S, DeWind LT, DeGroot LJ. Familial syndrome combining deaf-mutism, stippled epiphyses, goiter, and abnormally high PBI: possible target organ refractoriness to thyroid hormone. J Clin Endocrinol Metab 1967;27:279–294.Google Scholar
  2. 2.
    Refetoff S, DeGroot LJ, Benard B, DeWind LT. Studies of a sibship with apparent hereditary resistance to the intracellular action of thyroid hormone. Metabolism 1972;21:723–756.Google Scholar
  3. 3.
    Lamberg BA. Congenital euthyroid goitre and partial peripheral resistance to thyroid hormones. Lancet 1973;1:854–857.Google Scholar
  4. 4.
    Announcement. A registry for resistance to thyroid hormone. Mol Endocrinol 1994;8:1558.Google Scholar
  5. 5.
    Albright F, Butler AM, Bloomberg E. Rickets resistant to vitamin D therapy. Am J Dis Child 1937;54:531–547.Google Scholar
  6. 6.
    Usala SJ, Bale AE, Gesundheit N, Weinberger C, Lash RW, Wondisford FE, McBride OW, Weintraub BD. Tight linkage between the syndrome of generalized thyroid hormone resistance and the human c-erbAα gene. Mol Endocrinol 1988;2:1217–1220.Google Scholar
  7. 7.
    Sakurai A, Takeda K, Ain K, Ceccarelli P, Nakai A, Seino S, Bell GI, Refetoff S, DeGroot LJ. Generalized resistance to thyroid hormone associated with a mutation in the ligand-binding domain of the human thyroid hormone receptor ß. Proc Natl Acad Sci (USA) 1989;86:8977–8981.Google Scholar
  8. 8.
    Takeda K, Sakurai A, DeGroot LJ, Refetoff S. Recessive inheritance of thyroid hormone resistance caused by complete deletion of the protein-coding region of the thyroid hormone receptor-ß gene. J Clin Endocrinol Metab 1992;74:49–55.Google Scholar
  9. 9.
    Beck-Peccoz P, Roncoroni R, Mariotti S, Medri G, Marcocci C, Brabant G, Forloni F, Pinchera A, Faglia G. Sex hormone-binding globulin measurement in patients with inappropriate secretion of thyrotropin (IST): Evidence against selective pituitary thyroid hormone resistance in nonneoplastic IST. J Clin Endocrinol Metab 1990;71:19–25.Google Scholar
  10. 10.
    Beck-Peccoz P, Chatterjee VKK. The variable clinical phenotype in thyroid hormone resistance syndrome. Thyroid 1994;4:225–232.Google Scholar
  11. 11.
    Refetoff S, Weiss RE. Resistance to thyroid hormone. In: Thakker TV. ed. Molecular genetics of endocrine disorders. London: Chapman & Hill, 1997:85–122.Google Scholar
  12. 12.
    Snyder D, Sesser D, Skeels M, Nelson G, LaFranchi S. Thyroid disorders in newborn infants with elevated screening T4. Thyroid 1997 (abstract); 7, suppl1:S-29.Google Scholar
  13. 13.
    Refetoff S, Weiss RE, Usala SJ. The syndromes of resistance to thyroid hormone. Endocr Rev 1993;14:348–399.Google Scholar
  14. 14.
    Hauser P, Zametkin AJ, Martinez P, Vitiello B, Matochik JA, Mixson AJ, Weintraub BD. Attention de®cit-hyperactivity disorder in people with generalized resistance to thyroid hormone. N Engl J Med 1993;328:997–1001.Google Scholar
  15. 15.
    Brucker-Davis F, Skarulis MC, Grace MB, Benichou J, Hauser P, Wiggs E, Weintraub BD. Genetic and clinical features of 42 kindreds with resistance to thyroid hormone. The National Institutes of Health prospective study. Ann Intern Med 1995;123:573–583.Google Scholar
  16. 16.
    Stein MA, Weiss RE, Refetoff S. Neurocognitive characteristics of individuals with resistance to thyroid hormone: comparisons to individuals with attention deficit hyperactivity disorder only. J Develop Behav Pediatr 1995;16:406–411.Google Scholar
  17. 17.
    Weiss RE, Stein MA, Duck SC, Chyna B, Phillips W, O'Brien T, Gutermuth L, Refetoff S. Low intelligence but not attention deficit hyperactivity disorder is associated with resistance to thyroid hormone caused by mutation R316H in the thyroid hormone receptor ß gene. J Clin Endocrinol Metab 1994;78:1525–1528.Google Scholar
  18. 18.
    Weiss RE, Stein MA, Trommer B, Refetoff S. Attention-deficit hyperactivity disorder and thyroid function. J Pediatr 1993; 123:539–545.Google Scholar
  19. 19.
    Elia J, Gulotta C, Rose SR, Martin G, Rapoport J. Thyroid function and attention-deficit hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 1994;33:169–172.Google Scholar
  20. 20.
    Spencer T, Biederman J, Wilens T, Guite J, Harding M. ADHD and thyroid abnormalities: a research note. J Child Psychol Psychiat 1995;36:879–885.Google Scholar
  21. 21.
    Refetoff S, Weiss RE, Wing JR, Sarne D, Chyna B, Hayashi Y. Resistance to thyroid hormone in subjects from two unrelated families is associated with a point mutation in the thyroid hormone receptor ß gene resulting in the replacement of the normal proline 453 with serine. Thyroid 1994;4:249–254.Google Scholar
  22. 22.
    Bernal J, DeGroot LJ, Refetoff S, Fang VS, Barsano S. Absent nuclear thyroid hormone receptors and failure of T3-induced TRH suppression in the syndrome of peripheral resistance to thyroid hormone. In: Robbins J, Braverman LE, eds. Thyroid Research, Proceedings of the International Thyroid Conference. Amsterdam: Excerpta Medica, 1976:316–319.Google Scholar
  23. 23.
    Refetoff S, Murata Y, Mori Y, Janssen OE, Takeda K, Hayashi Y. Thyroxine-binding globulin: organization of the gene and variants. Horm Res 1996;45:128–138.Google Scholar
  24. 24.
    Wada NHC, Shimizu C, Kijima H, Kubo M, Koike T. A novel missense mutation in codon 218 of the albumin gene in a distinct phenotype of familial dysalbuminemic hyperthyroxinemia in a Japanese kindred. J Clin Endocriol Metab 1997;82:3246–3250.Google Scholar
  25. 25.
    Moses AC, Lawlor J, Haddow J, Jackson IMD. Familial euthyroid hyperthyroxinemia resulting from increased thyroxine binding to thyroxine-binding prealbumin. N Engl J Med 1982;306:966–969.Google Scholar
  26. 26.
    Refetoff S, Dwulet FE, Benson MD. Reduced affinity for thyroxine in two of three structural thyroxine-binding prealbumin variants associated with familial amyloidotic polyneuropathy. J Clin Endocrinol Metab 1986;63:1432–1437.Google Scholar
  27. 27.
    Ingbar JC, Borges M, Iflah S, Kleinmann RE, Braverman LE, Ingbar SH. Elevated serum thyroxine concentration in patients receiving “replacement” doses of levothyroxine. J Endocrinol Invest 1982;5:77–85.Google Scholar
  28. 28.
    Fish LH, Schwartz HL, Cavanaugh MD, Steffes MW, Bantle JP, Oppenheimer JH. Replacement dose, metabolism, and bioavailability of levothyroxine in the treatment of hypothyroidism. N Engl J Med 1987;316:764–770.Google Scholar
  29. 29.
    Beck-Peccoz P, Brucker-Davis F, Persani L, Smallridge RC, Weintraub BD. Thyrotropin-secreting pituitary tumors. Endocr Rev 1996;17:610–838.Google Scholar
  30. 30.
    Burrow GN, Wortzman G, Rewcastel NB, Holage RC, Kovacs K. Microadenomas of the pituitary and abnormal sella tomograms in an unselected autopsy series. N Engl J Med 1981;304:156–158.Google Scholar
  31. 31.
    Bercu BB, Schulman JD. Pituitary secretion of α and ß subunits of thyroid-stimulating hormone (TSH) in nephropathic cystinosis. Israel J Med Sci 1984;20:179–185.Google Scholar
  32. 32.
    Bercu BB, Orloff S, Schulman JD. Pituitary resistance to thyroid hormone in cystinosis. J Clin Endocrinol Metab 1980;51:1262–1268.Google Scholar
  33. 33.
    Bellastella A, Criscuolo T, Sinisi AA, Iorio S, Mazzuca A, Parlato F, Perrone L, Faggiano M. Plasma thyrotropin, thyroxine, triiodothyronine, free thyroxine, free triiodothyronine, and cortisol levels in blind prepubertal boys. J Endocrinol Invest 1988;11:171–174.Google Scholar
  34. 34.
    Bollerslev J, Kvetny J. Thyroid hormone resistance in blood monocyte cells and elevated serum T3 in patients with autosomal dominant osteopetrosis. Scand J Clin Lab Invest 1988;48:795–799.Google Scholar
  35. 35.
    Rösler A, Litvin Y, Hage C, Gross J, Cerasi E. Familial hyperthyroidism due to inappropriate thyrotropin secretion successfully treated with triiodothyronine. J Clin Endocrinol Metab 1982;54:76–82.Google Scholar
  36. 36.
    Weinberger C, Thompson CC, Ong ES, Lebo R, Gruol DJ, Evans RM. The c-erb-A gene encodes a thyroid hormone receptor. Nature 1986;324:641–646.Google Scholar
  37. 37.
    Nakai A, Sakurai A, Bell GI, DeGroot LJ. Characterization of a third human thyroid hormone receptor coexpressed with other thyroid hormone receptors in several tissues. Mol Endocrinol 1988;2:1087–1092.Google Scholar
  38. 38.
    Chassande O, Fraichard A, Gauthier K, Flamant F, Legrand C, Savatier P, Laudet V, Samarut J. Identification of transcripts initiated from an internal promoter in the c-erb-Aa locus that encode inhibitors of retinoic acid receptor-a and triiodothyronine receptor activities. Mol Endocrinol 1997;11:1278–1290.Google Scholar
  39. 39.
    McKenna NJ, Lanz RB, O'Malley BW. Nuclear receptor coregulators: Cellular and molecular biology. Endocrine Rev 1999;20:321–344.Google Scholar
  40. 40.
    Yen PM, Chin WW. New advances in understanding the molecular mechanisms of thyroid hormone action. TEM 1994;5:65–72.Google Scholar
  41. 41.
    Mangelsdorf DL, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, Evans RM. The nuclear receptor superfamily: the second decade. Cell 1995;83:835–839.Google Scholar
  42. 42.
    Hörlein AJ, Näär AM, Heinzel T, Torchia J, Gloss B, Kurokawa R, Ryan A, Kamei Y, Söderström M, Glass CK, Rosenfeld MG. Ligandindependent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 1995;377:397–404.Google Scholar
  43. 43.
    Kurokawa R, Söderström M, Hörlein A, Halahmi S, Brown M, Rosenfeld MG, Glass CK. Polarity-specific activities of retinoic acid receptors determined by a co-repressor. Nature 1995;377:451–454.Google Scholar
  44. 44.
    Chen JD, Evans RM. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 1995;377:454–457.Google Scholar
  45. 45.
    Sande S. Privalsky ML. Identification of TRACs (T3 receptorassociating cofactors), a family of cofactors that associate with, and modulate the activity of, nuclear hormone receptors. Mol Endocrinol 1996;10:813–825.Google Scholar
  46. 46.
    Nagy L, Kao H-Y, Chakravarti D, Lin RJ, Hassig CA, Ayer DE, Schreiber SL, Evans RM. Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell 1997;89:373–380.Google Scholar
  47. 47.
    Oñate SA, Tsai SY, Tsai M-J, O'Malley BW. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 1995;270:1354–1357.Google Scholar
  48. 48.
    Hayashi Y, Ohmori S, Ito T, Seo H. A splicing variant of steroid receptor coactivator-1 (SRC-1E): the major isoform of SCR-1 to mediate thyroid hormone action. Biochem Biophys Res Commun 1997;236:83–87.Google Scholar
  49. 49.
    Voegel JJ, Heine MJS, Zechel C, Chambon P, Gronemeyer H. TIF2, a 160 kD transcriptional mediator for the ligand-dependent activation function AF-2 nuclear receptor. EMBO J 1996; 15:3667–3675.Google Scholar
  50. 50.
    Torchia J, Rose DW, Inostroza J, Kamei Y, Westin S, Glass CK, Rosenfeld MG. The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature 1997;387:677–684.Google Scholar
  51. 51.
    Adams CC, Workman J. Nucleosome displacement in transcription. Cell 1993;72:305–308.Google Scholar
  52. 52.
    Wolffe AP, Pruss D. Targenting chromatin assembly in transcriptional repression by thyroid hormone receptor and histone deacetylase. EMBO J 1996;17:520–534.Google Scholar
  53. 53.
    Hollenberg AN, Monden T, Flynn TR, Boers M-E, Cohen O, Wondisford FE. The human thyrotropin-releasing hormone gene is regulated by thyroid hormone through two distinct classes of negative thyroid hormone response elements. Mol Endocrinol 1995;9:540–550.Google Scholar
  54. 54.
    Tagami T, Madison LD, Nagaya T, Jameson JL. Nuclear receptor corepressors activate rather than suppress basal transcription of genes that are negatively regulated by thyroid hormone. Mol Cell Biol 1997;17:2642–2648.Google Scholar
  55. 55.
    Forrest D, Erway LC, Ng L, Altschuler R, Curran T. Thyroid hormone receptor ß is essential for development of auditory function. Nature Genet 1996;13:354–357.Google Scholar
  56. 56.
    Weiss RE, Forrest D, Pohlenz J, Cua K, Curran T, Refetoff S. Thyrotropin regulation by thyroid hormone in thyroid hormone receptor ß-deficient mice. Endocrinology 1997;138:3624–3629.Google Scholar
  57. 57.
    Abel ED, Boers M-E, Pazos-Moura CC, Moura EG, Kaulbach HC, Zakaria M, Radovick S, Wondisford. Targeted disruption of the beta-2 isoform of the thyroid hormone receptor results in central thyroid hormone resistance (Abstract). American Thyroid Association, Portland, OR, 1998.Google Scholar
  58. 58.
    Gauthier K, Chassande O, Platerotti M, Roux J-P, Legrand C, Rousset B, Weiss R, Trouillas J, Samarut J. Different functions for the thyroid hormone receptors TRα and TRß in the control of thyroid hormone production and post-natal development. EMBO J 1999;18:623–621.Google Scholar
  59. 59.
    Wikstsöm L, Johansson C, Salto C, Barlow C, Campos Barros A, Baas F, Forrest D, Thorén P, Vennström B. Abnormal heart rate and body temperature in mice lacking thyroid hormone receptor. EMBO J 1998;17:455–461.Google Scholar
  60. 60.
    Weiss RE, J X, G N, Pohlenz J, O'Malley B, Refetoff S. Mice deficient in the steroid receptor co-activator 1 (SRC-1) are resistant to thyroid hormone. The EMBO J 1999;18:1900–1904.Google Scholar
  61. 61.
    Haugen BR, Brown NS, Brinkmeier ML, Camper SA, Greenlee L, Krezel W, Chambon. Retinoid X receptor gamma deficient mice have a biochemical phenotype consistent with mild thyroid hormone resistance (abstract). 81st Annual Meeting of The Endocrine Society, San Diego, CA, June 12–15, 1999, 1999.Google Scholar
  62. 62.
    Weiss RE, Weinberg M, Refetoff S. Identical mutations in unrelated families with generalized resistance to thyroid hormone occur in cytosine-guanine-rich areas of the thyroid hormone receptor beta gene: Analysis of 15 families. J Clin Invest 1993;91:2408–2415.Google Scholar
  63. 63.
    Adams M, Matthews C, Collingwood TN, Tone Y, Beck-Peccoz P, Chatterjee KK. Genetic analysis of 29 kindreds with generalized and pituitary resistance to thyroid hormone: identification of thirteen novel mutations in the thyroid hormone receptor ß gene. J Clin Invest 1994;94:506–515.Google Scholar
  64. 64.
    Sakurai A, Miyamoto T, Refetoff S, DeGroot LJ. Dominant negative transcriptional regulation by a mutant thyroid hormone receptor β in a family with generalized resistance to thyroid hormone. Mol Endocrinol 1990;4:1988–1994.Google Scholar
  65. 65.
    Nagaya T, Eberhardt NL, Jameson JL. Thyroid hormone resistance syndrome: correlation of dominant negative activity and location of mutations. J Clin Endocrinol Metab 1993;77:982–990.Google Scholar
  66. 66.
    Nagaya T, Jameson JL. Thyroid hormone receptor dimerization is required for the dominant negative inhibition by mutations that cause thyroid hormone resistance. J Biol Chem 1993;268:15766–15771.Google Scholar
  67. 67.
    Zhu X-G, Yu C-L, McPhie P, Wong R, Cheng S-Y. Understanding the molecular mechanism of dominant negative action of mutant thyroid hormone ß1-receptors: the important role of the wildtype/mutant receptor heterodimer. Endocrinology 1996;137:712–721.Google Scholar
  68. 68.
    Nagaya T, Fujieda N, Seo H. Requirement of corepressor binding of thyroid hormone receptor mutants for dominant negative inhibition. Biochem Biophys Res Commun 1998;247:620–623.Google Scholar
  69. 69.
    Collingwood TN, Wagner R, Matthews CH, Clifton-Bligh RJ, Mark G, Rajanayagam O, Agostini M, Fletterick RJ, Beck-Peccoz P, Reinhardt W, Binder G, Ranke MB, Hermus A, Hesch RD, Lazarus J, Paul N, Parfitt V, Ragatt P, de Zegher F, Chatterjee. A role for helix 3 of the TRβ ligand-binding domain in coactivator recruitment identified by characterization of a third cluster of mutations in resistance to thyroid hormone. EMBO J 1998;16: 4760–4770.Google Scholar
  70. 70.
    Yagi H, Pohlenz J, Hayashi Y, Sakurai A, Refetoff S. Resistance to thyroid hormone caused by two mutant thyroid hormone receptor ß, R243Q and R243W, with marked impairment of function that cannot be explained by altered in-vitro 3,5,3'-triiodothyronine binding affinity. J Clin Endocrinol Metab 1997;82:1608–1614.Google Scholar
  71. 71.
    Safer JD, Cohen RN, Hollenberg AN, Wondisford FE. Defective release of corepressor by hinge mutants of the thyroid hormone receptor found in patients with resistance to thyroid hormone. J Biol Chem 1998;273:30175–30182.Google Scholar
  72. 72.
    Yoh SM, Chatterjee VKK, Privalsky ML. Thyroid hormone resistance syndrome manifests as an aberrant interaction between mutant T3 receptor and transcriptional corepressor. Mol Endocrinol 1997;11:470–480.Google Scholar
  73. 73.
    Liu Y, Takeshita A, Misiti S, Chin WW, Yen PM. Lack of coactivator interaction can be a mechanism for dominant negative activity by mutant thyroid hormone receptors. Endocrinology 1998;139:4197–4204.Google Scholar
  74. 74.
    Tagami T, Gu W-X, West B, Jameson JL. A novel natural mutation in TRβ that has strong interaction with nuclear corepressors and impaired interaction with coactivators. Mol Endo 1998;12:1888–1902.Google Scholar
  75. 75.
    Weiss RE, Marcocci C, Bruno-Bossio G, Refetoff S. Multiple genetic factors in the heterogeneity of thyroid hormone resistance. J Clin Endocrinol Metab 1993;76:257–259.Google Scholar
  76. 76.
    Weiss RE, Hayashi Y, Nagaya T, Petty KJ, Murata Y, Tunka H, Seo H, Refetoff S. Dominant inheritance of resistance to thyroid hormone not linked to defects in the thyroid hormone receptors α or β genes may be due to a defective co-factor. J Clin Endocrinol Metab 1996;81:4196–4203.Google Scholar
  77. 77.
    Pohlenz J, Weiss RE, Macchia PE, Pannain S, Refetoff S. Five new families with resistance to thyroid hormone not caused by mutations in the thyroid hormone receptor beta gene. J Clin. Endocrinol Metab 1999; 84:3919–3928.Google Scholar
  78. 78.
    Weiss RE. Management of patients with resistance to thyroid hormone. Thyroid Today 1999;12:1–11.Google Scholar
  79. 79.
    Gurnell M, Rajanayagam O, Barbar I, Keston Jones M, Chatterjee VKK. Reversible pituitary enlargement in the syndrome of resistance to thyroid hormone. Thyroid 1998;7:678–682.Google Scholar
  80. 80.
    Weiss RE, Stein MA, Refetoff S. Behavioral effects of liothyronine (L-T3) in children with attention deficit hyperactivity disorder in the presence an absence of resistance to thyroid hormone. Thyroid 1997;7:389–393.Google Scholar
  81. 81.
    Beck-Peccoz P, Piscitelli G, Cattaneo MG, Faglia G. Effectiveness of 3,5,3'-triiodothyroacetic acid (TRIAC), but not bromocriptine, in lowering TSH secretion in one hyperthyroid patient with nonneoplastic pituitary TSH hypersecretion. Ann d'Endocrinol 1983 (Abstract);44:38A.Google Scholar
  82. 82.
    Kunitake JM, Hartman N, Henson LC, Lieberman J, Williams DE, Wong M, Hershman. 3,5,3'-triiodothyroacetic acid therapy for thyroid hormone resistance. J Clin Endocrinol Metab 1989;69:461–466.Google Scholar
  83. 83.
    Schueler PA, Schwartz HL, Strait KA, Mariash CN, Oppenheimer JH. Binding of 3,5,3'-triiodothyronine (T3) and its analogs to the in vitro translational products of c-erbA protooncogenes: Differences in the affinity of ϑ-and ß-forms for the acetic acid analog and failure of the human testis and kidney a-2 products to bind T3. Mol Endocrinol 1990;:227–234.Google Scholar
  84. 84.
    Takeda T, Suzuki S, Liu R-T, DeGroot LJ. Triiodothyroacetic acid has unique potential for therapy of resistance to thyroid hormone. J Clin Endocrinol Metab 1995;80:2033–2040.Google Scholar
  85. 85.
    Sherman SI, Gopal J, Haugen BR, Chiu AC, Whaley K, Nowlakha P, Duvic M. Central hypothyroidism associated with retionid x receptor-selective ligands. N Engl J Med 1999;340:1075–1079.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Roy E. Weiss
    • 1
  • Samuel Refetoff
    • 2
  1. 1.Departments of Medicine, Jr. Mental Retardation Research CenterUniversity of ChicagoChicago
  2. 2.Departments of Medicine, Pediatrics and The J.P. Kennedy, Jr. Mental Retardation Research CenterUniversity of ChicagoChicago

Personalised recommendations