Journal of Nanoparticle Research

, Volume 1, Issue 2, pp 267–276 | Cite as

Engineering Aspects of Preparation of Nanocrystalline Particles in Microemulsions

  • Jörg Schmidt
  • Christine Guesdon
  • Reinhard Schomäcker


Engineering aspects of the preparation of palladium nanoparticles in non-ionic w/o-microemulsions are examined. In order to achieve reproducible synthesis conditions a semi-batch reactor with a standardized design is used. Influences of the stirring rate and of different ways of concentration control on the product properties are observed. For reproducible synthesis it is important to establish appropriate and defined preparation conditions. Monodisperse palladium particles of around 5 nm size are obtained by adding the microemulsion containing the palladium salt at a constant feed rate to the precharged microemulsion containing the reducing agent. A quantitative kinetic model is proposed to describe particle formation in microemulsions. Unknown parameters of the model have been estimated by independent examinations or can be achieved by fitting to the experimental data.

nanoparticles microemulsions reaction engineering formation model simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bandyopadhyaya R., R. Kumar & K.S. Gandhi, 1997. Langmuir, 13, 3610–3620.Google Scholar
  2. Boutonnet M., J. Kizling & P. Stenius, 1982. Colloids and Surfaces, 5, 209–225.Google Scholar
  3. Eastoe J. & B. Warne, 1996. Current Opinion in Colloid & Interface Science, 1, 800–805.Google Scholar
  4. Fletcher P. & D. Horsup, 1992. J. Chem. Soc. Faraday Trans. 88(6), 855–864.Google Scholar
  5. Hiby J.W., 1979. Fortschr. der Verfahrenstechnik 17 B, 137–155. Homogenisation.Google Scholar
  6. Hirai T., H. Sato & I. Komasawa, 1993. Ind. Eng. Chem. Res. 32, 3014–3019.Google Scholar
  7. La Mer V. & R. Dinegar, 1950. J. Chem. Soc. 72(11), 4847–4854.Google Scholar
  8. Lade M., H. Mays, J. Schmidt & R. Schom¨acker, in preparation.Google Scholar
  9. Mersmann A., M. Angerh¨ofer & J. Franke, 1994. Chem. Eng. Technol. 17, 1–9.Google Scholar
  10. Munoz E., C. Gomez-Herrera, M. Graciani, M.L. Moya & F. Sanchez, 1991. J. Chem. Soc. Faraday Trans. 87(1), 129–132.Google Scholar
  11. Natarajan U., K. Handique, A. Mehra, J.R. Bellare & K.C. Khilar, 1996. Langmuir, 12, 2670–2678.Google Scholar
  12. Oldfield C., 1991. J. Chem. Soc. Faraday Trans. 87(16), 2607–2612.Google Scholar
  13. Osseo-Asare K. & F.J. Arriagada, 1990. Ceramic Transactions 12, Ceramic Powder Science III.Google Scholar
  14. Pileni M., 1993. Advances in Colloid and Interface Science, 46, 139–163.Google Scholar
  15. Tojo C., M.C. Blanco & M.A. Lopez-Quintela, 1997. Langmuir, 13, 4527–4534.Google Scholar
  16. Zlokarnik M., 1967. Chem.-Ing.-Tech. 39, 9/10, 539–548.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Jörg Schmidt
    • 1
  • Christine Guesdon
    • 1
  • Reinhard Schomäcker
    • 1
  1. 1.Institut für Technische Chemie, Sekr. TC 8Technische Universität BerlinBerlinGermany

Personalised recommendations