Journal of Nanoparticle Research

, Volume 1, Issue 2, pp 235–242

Coated Nanoparticles: A New Way to Improved Nanocomposites

  • D. Vollath
  • D.V. Szabó


This paper introduces the new concept of coated nanoparticles as starting material for improved nanocomposites. The very special properties of nanomaterials often are properties of isolated particles. After combining nanoparticles to a macroscopic workpiece, usually these special properties are lost. Therefore, to obtain macroscopic parts exhibiting the properties of the isolated particles it is necessary to avoid or at least reduce the interaction of the particles. This can be achieved by coating each individual particle with a second ceramic or polymer layer. This type of materials can be synthesised only by using the microwave plasma process, because in this process the particles leave the plasma zone with electrical charges thwarting agglomeration. Additionally, by proper selection of the coating material it is possible to avoid grain growth during densification of the powder by sintering or hot pressing. As an example of application and as a proof of concept, the properties of macroscopic superparamagnetic parts are explained. Possibly, coated nanoparticles are the only starting material to produce macroscopic parts showing the very special properties of nanomaterials.

microwave plasma nanocomposite nanoparticle superparamagnetism oxide nitride 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chang W., G. Skandan & B.H. Kaer, 1994. Nanostr. Materials 4, 507.Google Scholar
  2. Gleiter 1989. Nanocrystalline Materials, Prog. in Materials Science 33, 223.Google Scholar
  3. Gleiter 1992. Nanostructured Material 1, 1.Google Scholar
  4. Hahn H., J.A. Eastman & R.W. Siegel, 1988. Ceram. Trans. B1, 115.Google Scholar
  5. Néel L., 1949. Compt. Rend. 228, 664.Google Scholar
  6. Schloßmacher P., D.V. Szabó & P. Schweiss, 1996. FZKNachrichten 28, 89.Google Scholar
  7. Szabó D.V. & H. Müllejans, 1994. Proc. ICEM13, Vol. 2A, Le Éditions de Physique, Paris, pp. 379.Google Scholar
  8. Vollath D. & K.E. Sickafus, 1992. Nanostructured Materials 1, 427.Google Scholar
  9. Vollath D. & K.E. Sickafus, 1993. Nanostructured Materials 2, 451.Google Scholar
  10. Vollath D., 1994a. German Patent G9403591.0.Google Scholar
  11. Vollath D. & D.V. Szabó, 1994b. Nanostructured Materials 4, 927.Google Scholar
  12. Vollath D., D.V. Szabó & B. Seith, 1997a. German Patent 196 38 601.2–43.Google Scholar
  13. Vollath D., D.V. Szabó, R.D. Taylor & J.O. Willis, 1997b. J. Mater. Res. 12, 2175.Google Scholar
  14. Vollath D., D.V. Szabó & J. Fuchs, 1991. Nanostructured Materials (in print).Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • D. Vollath
    • 1
  • D.V. Szabó
    • 1
  1. 1.Forschungszentrum KarlsruheInstitut für Materialforschung IIIKarlsruheGermany

Personalised recommendations