Journal of Nanoparticle Research

, Volume 1, Issue 3, pp 353–368 | Cite as

Formation of Silver and Gold Dendrimer Nanocomposites

  • Lajos Balogh
  • Regina Valluzzi
  • Kenneth S. Laverdure
  • Samuel P. Gido
  • Gary L. Hagnauer
  • Donald A. Tomalia
Article

Abstract

Structural types of dendrimer nanocomposites have been studied and the respective formation mechanisms have been described, with illustration of nanocomposites formed from poly(amidoamine) PAMAM dendrimers and zerovalent metals, such as gold and silver. Structure of {(Au(0))n−PAMAM} and {(Ag(0))n−PAMAM} gold and silver dendrimer nanocomposites was found to be the function of the dendrimer structure and surface groups as well as the formation mechanism and the chemistry involved. Three different types of single nanocomposite architectures have been identified, such as internal (‘I’), external (‘E’) and mixed (‘M’) type nanocomposites. Both the organic and inorganic phase could form nanosized pseudo-continuous phases while the other components are dispersed at the molecular or atomic level either in the interior or on the surface of the template/container. Single units of these nanocomposites may be used as building blocks in the synthesis of nanostructured materials.

dendrimers nanoparticles polymer-inorganic nanocomposites templates 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R&D Status and Trends in Nanoparticles, Nanostructured Materials and Nanodevices in the United States, Proceedings of the May 8–9, 1997 Workshop. International Technology Research Institute, 1998.Google Scholar
  2. 2.
    Drexler, K.E., Nanosystems, Wiley-Interscience, NY– Chicester–Brisbane–Toronto–Singapore, 1992.Google Scholar
  3. 3.
    Alivisatos, A.P., Science, 271, 923, 1996.Google Scholar
  4. 4.
    Physics and Chemistry of Metal Cluster Compounds L.J. de Jongh (ed.) Kluwer Academic, Dordrecht/Boston/London, 1994, and references thereof.Google Scholar
  5. 5.
    Schmid, G., Chem. Rev., 92, 1709, 1992.Google Scholar
  6. 6.
    Schmid, G. and Hornyak, G.L., Current Opinion in Solid State and Mat. Sci., 2(2), 204, 1997.Google Scholar
  7. 7.
    Cohen, M.L. and Knight,W.D., Physics Today, 12, 42, 1990.Google Scholar
  8. 8.
    Frens, G., Nature Phys. Sci., 241, 20, 1973.Google Scholar
  9. 9.
    Fendler, J.H. and Meldrum, F.C., Adv. Mater., 7(7), 607, 1995.Google Scholar
  10. 10.
    Petit, C., Lixon, P. and Pileni, M.P., J. Phys. Chem., 97, 12974, 1993.Google Scholar
  11. 11.
    Calvert P. and Rieke P., Chem. Mater., 8, 1715, 1996.Google Scholar
  12. 12.
    Douglas, T., Dickson, D.P.E., Betteridge, S., Carnock, J., Garner C.D. and Mann, S., Science, 269, 54, 1995.Google Scholar
  13. 13.
    Martin, C.R., Science, 1994, 266 (December 23), 1961.Google Scholar
  14. 14.
    Markowitz, M.A., Chow, G.-M. and Singh, A., Langmuir, 199, 10, 4095.Google Scholar
  15. 15.
    Amundsen, A.R., Whelan, J. and Bosnich, B., J. Am. Chem. Soc., 99(20), 6730, 1977.Google Scholar
  16. 16.
    Mirkin, C.A., Letsinger, R.L., Mucic, R.C. and Storhoff, J.J., Nature, 382, 607, 1996.Google Scholar
  17. 17.
    Andrews, M.P. and Ozin, G.A., Chem. Mater., 1, 174, 1989.Google Scholar
  18. 18.
    Huang, H.H., Yan, F. Q., Kek, Y.M., Chew, C.H., Xu, G.Q., Ji, W., Oh, P.S. and Tang, S.H., Langmuir, 13, 172, 1997.Google Scholar
  19. 19.
    Kuczynski, J.P., Milosavljevic, B.H. and Thomas, J.K., J. Phys. Chem., 88, 980, 1984.Google Scholar
  20. 20.
    Moffitt, M., McMahon, L., Pessel, V. and Eisenberg, A., Chem. Mater., 7, 1185, 1995.Google Scholar
  21. 21.
    Fogg, D.E., Radzilowski, L.H, Blanski, R., Schrock, R.R. and Thomas, E.L., Macromolecules, 30, 417, 1996.Google Scholar
  22. 22.
    Spatz, J.P., Sheiko, S. and Moller, M., Macromolecules, 29, 3220, 1996.Google Scholar
  23. 23.
    Gorman, C.B., Parkhurst, B.L., Su, W.Y. and Chen, K., J. Am. Chem. Soc. 119(5), 1141, 1997.Google Scholar
  24. 24.
    Chu, A., Cook, J., Heesom, R.J.R., Huchison, J.L., Green, M.L.H. and Sloan, J., Chem. Mater., 8, 2751, 1996.Google Scholar
  25. 25.
    Gray, D.H., Hu, S., Juang, E. and Gin, D.L., Adv. Mater., 9(9), 728, 1997.Google Scholar
  26. 26.
    Pileni, M.P., Langmuir, 13, 3266, 1997, and, ibid., 3927.Google Scholar
  27. 27.
    (a) Tomalia, D.A., Baker, H., Dewald, J., Hall, M., Kallos, M., Martin, S., Roeck, J., Ryder, J. and Smith, P., Polym. J. (Tokyo) 17, 117–132, 1985, (b) Tomalia, D.A., Naylor, A.M. and Goddard III, W.A., Angew. Chem., 102(2), 119– 157, 1990, Angew. Chem. Int. Ed. Engl. 29(2), 138–175, 1990.Google Scholar
  28. 28.
    Dandliker, P.J., Diederich, F., Gross, M., Knobler, C.B., Louati, A. and Sanford, E.M., Angew. Chem. Int. Ed. Engl. 33, 17, 1739, 1994.Google Scholar
  29. 29.
    Valerio, C., Fillaut, J., Ruiz, J., Guittard, J., Blais, J. and Astruc, D., J. Am. Chem. Soc. 119(10), 2588, 1997.Google Scholar
  30. 30.
    Slany, M., Bardaji, M., Caminade, A., Chaudret, B. and Majoral, J., Inorg. Chem. 369, 1939, 1997.Google Scholar
  31. 31.
    Tomalia D.A. and Balogh, L., U.S. Patent Application 08/924,790 September 5, 1996.Google Scholar
  32. 32.
    Balogh, L., Swanson, D.R., Spindler, R. and Tomalia, D.A., Proc. ACS PMSE, 77, 118, 1997.Google Scholar
  33. 33.
    Balogh, L. and Tomalia, D.A., J. Am. Chem. Soc., 120(29), 7355, 1998.Google Scholar
  34. 34.
    Zhao, M., Sun, L. and Crooks, R.M., J. Am. Chem. Soc., 120(19), 4877–4878, 1998.Google Scholar
  35. 35.
    Sooklal, K., Hanus, L.H., Ploehn, H.J. and Murphy, C.J., Adv. Mater., 10(14), 1083, 1998.Google Scholar
  36. 36.
    Esumi K., Suzuki, A., Aihara N., Usui, K. and Torigoe K., Langmuir, 14, 3157–3159, 1998.Google Scholar
  37. 37.
    Balogh, L. and Tomalia, D.A., Adv. Mater., 1999, submitted for publication.Google Scholar
  38. 38.
    Physics and Chemistry of Metal Cluster Compounds L.J. de Jongh, (ed.) Kluwer Academic, Dordrecht/Boston/London, 1994, and references thereof.Google Scholar
  39. 39.
    Beck Tan, N., Balogh, L. and Trevino, S., Polym. Mater. Sci. & Eng., 77, 120, 1997.Google Scholar
  40. 40.
    BeckTan, N., Balogh, L., Trevino, S., Tomalia, D.A. and Lin, J.S., Characterization of Dendrimer-based Nanocomposites by SAXS and SANS. In Hybrid Materials, Mat. Res. Soc. Symp. Proc., 519, 143–150, 1998.Google Scholar
  41. 41.
    Beck Tan, N., Balogh, L., Trevino, S., Tomalia, D.A. and Lin, J.S., Polymer, 40, 2537–2545, 1999.Google Scholar
  42. 42.
    Balogh, L., Swanson, D.R., Fry, J. and Tomalia, D.A., 1998, submitted to Industrial and Engineering Chemistry Research.Google Scholar
  43. 43.
    Uppuluri, S., Ph.D. Thesis, Michigan Technological University, 1998.Google Scholar
  44. 44.
    Li, Y., Dubin, P.L., Spindler, R. and Tomalia, D.A., Macromolecules, 28, 8426, 1995.Google Scholar
  45. 45.
    Zhang, H., Dubin, P.L., Spindler, R. and Tomalia, D.A., Ber. Bunsenges. Phy. Chem. 100(6), 923, 1996.Google Scholar
  46. 46.
    Dubin, P.L., Edwards, S.L., Kaplan, J.I., Mehta, M.S., Tomalia, D.A. and Xia, J., Anal. Chem. 64, 2344, 1992.Google Scholar
  47. 47.
    Colvin, V.L., Goldstein, A.N. and Alivisatios, A.P., J. Am. Chem. Soc., 114, 5221, 1992.Google Scholar
  48. 48.
    Bar, G., Rubin, S., Cutts, R.W., Taylor T. N. and Zawodinski, T.A. Jr., Langmuir, 12, 1172, 1996.Google Scholar
  49. 49.
    He, Jin-An, Yang K., Valluzzi, R., Samuelson, L., Kumar, J., Tripathy, S.K., Balogh, L. and Tomalia, D.A., Chemistry of Materials, 1999, in press.Google Scholar
  50. 50.
    Cotton and Wilkinson: Advanced Inorganic Chemistry, Fourth Ed., J. Wiley and Sons, 1980.Google Scholar
  51. 51.
    Mie, G., Ann. Phys., 25, 377, 1908.Google Scholar
  52. 52.
    Doremus, R.H. and Rao, P., J. Mater. Res., 11(11), 2834, 1996.Google Scholar
  53. 53.
    (a) Bauer, B.J., Briber, R.M., Hammouda, B. and Tomalia, D.A.,PMSE67, 428, 1992, (b) Prosa,T.J., Bauer, B.J., Amis, E.J., Tomalia, D.A. and Scherrenberg, R., J. Polym. Sci., Polym. Phys. Ed. Part B, 35, 2913, 1997.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Lajos Balogh
    • 1
  • Regina Valluzzi
    • 2
  • Kenneth S. Laverdure
    • 3
  • Samuel P. Gido
    • 3
  • Gary L. Hagnauer
    • 4
  • Donald A. Tomalia
    • 1
    • 5
  1. 1.Center for Biologic NanotechnologyUniversity of MichiganAnn ArborUSA (Tel.
  2. 2.Department of Chemical TechnologyTufts Biotechnology CenterMedfordUSA
  3. 3.Polymer Science and EngineeringUniversity of Massachusetts, AmherstAmherstUSA
  4. 4.AMSRL-WM-MA, US Army Research Laboratory, APGUSA
  5. 5.ARL-MMI Dendritic Polymers Center of Excellence Michigan Molecular InstituteMidlandUSA

Personalised recommendations