Journal of Nanoparticle Research

, Volume 2, Issue 4, pp 345–362 | Cite as

Electronic Properties of Metallic Nanoclusters on Semiconductor Surfaces: Implications for Nanoelectronic Device Applications

  • Takhee Lee
  • Jia Liu
  • Nien-Po Chen
  • R.P. Andres
  • D.B. Janes
  • R. ReifenbergerEmail author


We review current research on the electronic properties of nanoscale metallic islands and clusters deposited on semiconductor substrates. Reported results for a number of nanoscale metal-semiconductor systems are summarized in terms of their fabrication and characterization. In addition to the issues faced in large-area metal-semiconductor systems, nano-systems present unique challenges in both the realization of well-controlled interfaces at the nanoscale and the ability to adequately characterize their electrical properties. Imaging by scanning tunneling microscopy as well as electrical characterization by current-voltage spectroscopy enable the study of the electrical properties of nanoclusters/semiconductor systems at the nanoscale. As an example of the low-resistance interfaces that can be realized, low-resistance nanocontacts consisting of metal nanoclusters deposited on specially designed ohmic contact structures are described. To illustrate a possible path to employing metal/semiconductor nanostructures in nanoelectronic applications, we also describe the fabrication and performance of uniform 2-D arrays of such metallic clusters on semiconductor substrates. Using self-assembly techniques involving conjugated organic tether molecules, arrays of nanoclusters have been formed in both unpatterned and patterned regions on semiconductor surfaces. Imaging and electrical characterization via scanning tunneling microscopy/spectroscopy indicate that high quality local ordering has been achieved within the arrays and that the clusters are electronically coupled to the semiconductor substrate via the low-resistance metal/semiconductor interface.

nanotechnology nanocluster array self-assembly GaAs STM 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andres R.P., T. Bein, M. Dorogi, S. Feng, J.I. Henderson, C.P. Kubiak, W. Mahoney, R.G. Osifchin & R. Reifenberger, 1996a. Coulomb staircase at room temperature in a self-assembled molecular nanostructure. Science 272, 1323–1325.Google Scholar
  2. Andres R.P., J.D. Bielefeld, J.I. Henderson, D.B. Janes, V.R. Kolagunta, C.P. Kubiak, W.J. Mahoney & R.G. Osifchin, 1996b. Self-assembly of a two-dimensional superlattice of molecularly linked metal clusters. Science 273, 1690–1693.Google Scholar
  3. Baca A.G., F. Ren, J.C. Zopler, R.D. Briggs & S.J. Pearton, 1997. A survey of ohmic contacts to III-V compound semiconductor. Thin Solid Films 308–309, 599–606.Google Scholar
  4. Bandyopadhyay S. & V.P. Roychowdhury, 1996. Computational paradigms in nanoelectronics: Quantum coupled single electron logic and neuromorphic networks. Jpn. J. Appl. Phys. 35, 3350–3362.Google Scholar
  5. Bigioni P.P., L.E. Harrell, W.G. Cullen, D.K. Guthrie, R.L. Whetten & P.N. First, 1999. Imaging and tunneling spectroscopy of gold nanoclusters and nanocrystal arrays. Eur. Phys. J. D6, 355–364.Google Scholar
  6. Binnig G., H. Rohrer, Ch. Gerber & E. Weibel, 1982. Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49, 57–61.Google Scholar
  7. Bowles R.S., J.J. Kolstad, J.M. Calo & R.P. Andres, 1981. Generation of molecular clusters of controlled size. Surf. Sci. 106, 117–124.Google Scholar
  8. Brillson L.J., R.E. Viturro, C. Mailhiot, J.L. Shaw, N. Tache, J. McKinley, G. Margaritondo, J.M. Woodall, P.D. Kirchner, G.D. Pettit & S.L. Wright, 1988. Unpinned schottky barrier formation at metal-GaAs interfaces. J. Vac. Sci. Technol. B6, 1263–1269.Google Scholar
  9. Brune H., M. Giovannini, K. Bromann & K. Kern, 1998. Self-organized growth of nanostructure arrays on strain-relief patterns. Nature 394, 451–453.Google Scholar
  10. Brust M., M. Walker, D. Bethell, D.J. Schiffrin & R. Whyman, 1994. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid. J. Chem. Soc. Chem. Commun. 1994, 801–802.Google Scholar
  11. Carroll D.L., M. Wagner, M. Rühle & D.A. Bonnell, 1997. Schottky-barrier formation at nanoscale metal-oxide interfaces. Phys. Rev. B55, 9792–9799.Google Scholar
  12. Chao L.C. & R.P. Andres, 1994. Synthesis of a supported metal catalyst using nanometer-size clusters. J. Colloid Interface Sci. 165, 290–295.Google Scholar
  13. Chen N.-P., H.J. Ueng, D.B. Janes, J.M.Woodall & M.R. Melloch, 2000. A quantitative conduction model for a low-resistance nonalloyed ohmic contact structure utilizing low-temperature-grown GaAs. J. Appl. Phys. 88, 309–315.Google Scholar
  14. Choi E. & R.P. Andres, 1987. Isolation of monodispersed gold clusters of controlled size. In: Jena P., Rao B.K. & Khanna S.N. eds. Physics and Chemistry of Small Clusters. NATO ASI Series B. Vol. 158. Plenum Press, New York, pp. 61–65.Google Scholar
  15. Chung S.-W., G. Markovich & J.R. Heath, 1998. Fabrication and alignment of wires in two dimensions. J. Phys. Chem. B 102, 6685–6687.Google Scholar
  16. Clarke L., M.N. Wybourne, M. Yan, S.X. Cai, L.O. Brown, J. Hutchison, & J.F.W. Keana, 1997. Fabrication and near-room temperature transport of patterned gold cluster structures. J. Vac. Sci. Technol. B 15, 2925–2929.Google Scholar
  17. Crommie M.F., C.P. Lutz & D.M. Eigler, 1993. Confinement of electrons to quantum corrals on a metal surface. Science 262, 218–220.Google Scholar
  18. Dai H., N. Franklin & J. Han, 1998. Exploiting the properties of carbon nanotubes for nanolithography. Appl. Phys. Lett. 73, 1508–1510.Google Scholar
  19. Datta S., W. Tian, S. Hong, R. Reifenberger, J.I. Henderson & C.P. Kubiak, 1997. Current-voltage characteristics of self-assembled monolayers by scanning tunneling microscopy. Phys. Rev. Lett. 79, 2530–2533.Google Scholar
  20. Datta S., D.B. Janes, R.P. Andres, C.P. Kubiak & R. Reifenberger, 1998. Molecular ribbons. Semicond. Sci. Tech. 13, 1347–1353.Google Scholar
  21. Dorogi M., J. Gomez, R. Oschifin, R.P. Andres & R. Reifenberger, 1995. Room-temperature Coulomb blockade from a self-assembled molecular nanostructure. Phys. Rev. B52, 9071–9077.Google Scholar
  22. Durston P.J., J. Schmidt, R.E. Palmer & J.P. Wilcoxon, 1997. Scanning tunneling microscopy of ordered coated cluster layers on graphite. Appl. Phys. Lett. 71, 2940–2942.Google Scholar
  23. Eigler D.M. & E.K. Schweizer, 1990. Positioning single atoms with a scanning tunnelling microscope. Nature 344, 524–526.Google Scholar
  24. Fan S., M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell & H. Dai, 1999. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283, 512–514.Google Scholar
  25. First P.N., J.A. Stroscio, R.A. Dragoset, D.T. Pierce & R.J. Celotta, 1989. Metallicity and gap states in tunneling to Fe clusters on GaAs(110). Phys. Rev. Lett. 63, 1416–1419.Google Scholar
  26. Gheber L.A., G. Gorodetsky & V. Volterra, 1994. Studies of submicron gold islands on silicon by STM. Thin Solid Films 238, 1–3.Google Scholar
  27. Gimzewski J.K. & R. Möller, 1987. Transition from the tunneling regime to point contact studied using scanning tunneling microscopy. Phys. Rev. B36, 1284–1287.Google Scholar
  28. Hasegawa H., T. Sato & C. Kaneshiro, 1999. Properties of nanometer-sized metal-semiconductor interfaces of GaAs and InP formed by an in situ electrochemical process. J. Vac. Sci. Technol. B 17, 1856–1866.Google Scholar
  29. Heine V., 1965. Theory of surface states. Phys. Rev. 138, A1689-A1696.Google Scholar
  30. Hong S., D.B. Janes, D. McInturff, R. Reifenberger & J.M. Woodall, 1996. Stability of a low-temperature grown GaAs surface layer following air exposure using tunneling spectroscopy. Appl. Phys. Lett. 68, 2258–2260.Google Scholar
  31. Hong S., J. Zhu & C.A. Mirkin, 1999. Multiple ink nanolithography: toward a multiple-pen nano-plotter. Science 286, 523–525.Google Scholar
  32. Houbertz R., T. Feignspan, F. Mielke, U. Memmert, U. Hartmann, U. Simon, G. Schon & G. Schmid, 1994. STM investigation on compact Au 55 cluster pellets. Europhys. Lett. 28, 641–646.Google Scholar
  33. Hu X., D. Sarid & P. von Blanckenhagen, 1999. Nano-patterning and single electron tunneling using STM. Nanotechnology 10, 209–212.Google Scholar
  34. Hung C.-Y., A.F. Marshall, D.-K. Kim, W.D. Nix, J.S. Harris Jr & R.A. Kiehl, 1999. Strain directed assembly of nanoparticle arrays within a semiconductor. J. Nanoparticle Research 1, 329–347.Google Scholar
  35. Jiang C.-S., T. Nakayama & M. Aono, 1999. Spatially resolved observation of Coulomb blockade and negative differential conductance on aAg cluster on the clean GaAs(110) surface. Appl. Phys. Lett. 74, 1716–1718.Google Scholar
  36. Johnson K.S., J.H. Thywissen, N.H. Dekker, K.K. Berggren, A.P. Chu, R. Younkin & M. Prentiss, 1998. Localization of metastable atom beams with optical standing waves: Nanolithography at the Heisenberg limit. Science 280, 1583–1586.Google Scholar
  37. Kiely C.J., J. Fink, M. Brust, D. Bethell & D.J. Schiffrin, 1998. Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters. Nature 396, 444–446.Google Scholar
  38. Korgel B.A. & D. Fitzmaurice, 1998. Self-assembly of silver nanocrystals into two-dimensional nanowire arrays. Adv. Mater. 10, 661–665.Google Scholar
  39. Kumar A. & G.M. Whitesides, 1993. Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ‘ink’ followed by chemical etching. Appl. Phys. Lett. 63, 2002–2004.Google Scholar
  40. Lang N.D., 1987. Resistance of a one-atom contact in the scanning tunneling microscope. Phys. Rev. B36, 8173–8176.Google Scholar
  41. Lee T., J. Liu, D.B. Janes, V.R. Kolagunta, J. Dicke, R.P. Andres, J. Lauterbach, M.R. Melloch, D. McInturff, J.M. Woodall & R. Reifenberger, 1999. An ohmic nanocontact to GaAs. Appl. Phys. Lett. 74, 2869–2871.Google Scholar
  42. Lee T., N.-P. Chen, J. Liu, R.P. Andres, D.B. Janes, E.H. Chen, M.R. Melloch, J.M.Woodall & R. Reifenberger, 2000a. Ohmic nanocontacts to GaAs using undoped and p-doped layers of low-temperature-grown GaAs, Appl. Phys. Lett. 76, 212–214.Google Scholar
  43. Lee T., 2000b, Electronic properties of Au nanoclusters/semiconductor structures with low resistance interfaces. Ph.D. thesis, Purdue University.Google Scholar
  44. Lercel M.J., H.G. Craighead & D.L. Allara, 1996. Sub-10 nm lithography with self-assembled monolayers. Appl. Phys. Lett. 68, 1504–1506.Google Scholar
  45. Liu J., T. Lee, D.B. Janes, B.L. Walsh, M.R. Melloch, J.M. Woodall, R. Reifenberger & R.P. Andres, 2000. Guided self-assembly of Au nanocluster arrays electronically coupled to semiconductor device layers. Appl. Phys. Lett. 77 (in press).Google Scholar
  46. Louie S.G., & M.L. Cohen, 1976. Electronic structure of metal-semiconductor interface. Phys. Rev. B13, 2461–2469.Google Scholar
  47. Melloch M.R., J.M. Woodall, E.S. Harmon, N. Otsuka, F.H. Pollak, D.D. Nolte, R.M. Feenstra & M.A. Lutz, 1995. Low-temperature grown III-V materials. Annu. Rev. Mater. Sci. 25, 547–600.Google Scholar
  48. Monch W., 1999. Barrier heights of real Schottky contacts explained by metal-induced gap states and lateral inhomogeneities. J. Vac. Sci. Technol. B 17, 1867–1876.Google Scholar
  49. Murray C.B., C.R. Kagan & M.G. Bawendi, 1995. Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science 270, 1335–1338.Google Scholar
  50. Nalwa H.S. (ed.), 2000. Handbook of Nanostructured Materials and Nanotechnology, Vol. 1–5. Academic Press, San Diego, USA.Google Scholar
  51. Ng T.-B., D.B. Janes, D. McInturff & J.M.Woodall, 1996. Inhibited oxidation in low-temperature grown GaAs surface layers observed by photoelectron spectroscopy. Appl. Phys. Lett. 69, 3551–3553.Google Scholar
  52. Park K.-H., M. Shin, J.S. Ha, W.S. Yun & Y.-J. Ko, 1999. Fabrication of lateral single-electron tunneling structures by field-induced manipulation of Ag nanoclusters on a silicon surface. Appl. Phys. Lett. 75, 139–141.Google Scholar
  53. Parker A.J., P.A. Childs, R.E. Palmer & M. Brust, 1999. Deposition of passivated gold nanoclusters onto prepatterned substrates. Appl. Phys. Lett. 74, 2833–2835.Google Scholar
  54. Patkar M.P., T.P. Chin, J.M. Woodall, M.S. Lundstrom & M.R. Melloch, 1995. Very low resistance nonalloyed ohmic contacts using low-temperature molecular beam epitaxy of GaAs. Appl. Phys. Lett. 66, 1412–1414.Google Scholar
  55. Radojkovic P., M. Schwartzkopff, M. Enachescu, E. Stefanov, E. Hartmann & F. Koch, 1996. Observation of Coulomb staircase and negative differential resistance at room temperature by scanning tunneling microscopy. J. Vac. Sci. Technol. B 14, 1229–1233.Google Scholar
  56. Roychowdhury V.P., D.B. Janes, S. Bandyopadhyay & X.Wang, 1996. Collective computational activity in self-assembled arrays of quantum dots: A novel neuromorphic architecture. IEEE Trans. Electr. Dev. 43, 1688–1699.Google Scholar
  57. Sato T., D.G. Hasko & H. Ahmed, 1997. Nanoscale colloidal particles: Monolayer organization and patterning. J. Vac. Sci. Technol. B 15, 1–4.Google Scholar
  58. Sato T., C. Kaneshiro, H. Okada & H. Hasegawa, 1999. Formation of size and position controlled nanometer size Pt dots on GaAs and InP substrates by pulsed electrochemical deposition. Jpn. J. Appl. Phys. Part. 1 38, 2448–2452.Google Scholar
  59. Simmons J.G., 1963. Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J. Appl. Phys. 34, 1793–1803.Google Scholar
  60. Snow A.W. & H.Wohltjen, 1998. Size-induced metal to semiconductor transition in a stabilized gold cluster ensemble. Chem. Mater. 10, 947–949.Google Scholar
  61. Tersoff J., 1984. Schottky barrier heights and the continuum of gap states. Phys. Rev. Lett. 52, 465–468.Google Scholar
  62. Tersoff J., 1988. In: Metallization and Metal-Semiconductor Interfaces. Proceedings of a NATO Advanced Research Workshop, Garching, West Germany, 1988. Plenum, New York, USA, 1989, 281–288.Google Scholar
  63. Tian W., S. Datta, S. Hong, R. Reifenberger, J.I. Henderson & C.P. Kubiak, 1998. Conductance spectra of molecular wires. J. Chem. Phys. 109, 2874–2882.Google Scholar
  64. Vossmeyer T., E. DeIonno & J.R. Heath, 1997. Light-directed assembly of nanoparticles. Angew. Chem. Int. Ed. Engl. 36, 1080–1083.Google Scholar
  65. Whetten R.L., J.T. Khoury, M.M. Alvarez, S. Murthy, I. Vezmar, Z.L. Wang, P.W. Stephens, C.L. Cleveland, W.D. Luedtke & U. Landman, 1996. Nanocrystal gold molecules. Adv. Mater. 8, 428–433.Google Scholar
  66. Wohltjen H. & A.W. Snow, 1998. Colloidal metal-insulator-metal ensemble chemresisitor sensor. Anal. Chem. 70, 2856–2859.Google Scholar
  67. Woodall J.M. & J.L. Freeouf, 1981. GaAs metallization: Some problems and trends. J. Vac. Sci. Technol. 19, 794–798.Google Scholar
  68. Xia Y. & G.M. Whitesides, 1998. Soft lithography. Angew. Chem. Int. Ed. 37, 550–575.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Takhee Lee
    • 1
  • Jia Liu
    • 2
  • Nien-Po Chen
    • 1
  • R.P. Andres
    • 2
  • D.B. Janes
    • 3
  • R. Reifenberger
    • 4
    Email author
  1. 1.Department of PhysicsPurdue UniversityW. LafayetteUSA
  2. 2.School of Chemical EngineeringPurdue UniversityW. LafayetteUSA
  3. 3.School of Electrical and Computer EngineeringPurdue UniversityW. LafayetteUSA
  4. 4.Department of PhysicsPurdue UniversityW. LafayetteUSA

Personalised recommendations