Advertisement

Journal of Nanoparticle Research

, Volume 1, Issue 2, pp 305–315 | Cite as

Simulation of Nanoparticle Production in Premixed Aerosol Flow Reactors by Interfacing Fluid Mechanics and Particle Dynamics

  • A. Schild
  • A. Gutsch
  • H. Mühlenweg
  • S.E. Pratsinis
Article

Abstract

The interaction of fluid mechanics and particle dynamics at the very early stages of flame synthesis largely affects the characteristics of the product powder. Detailed simulations provide a better understanding of these processes, which take place in a few milliseconds, and offer the possibility to influence the product characteristics by intelligent selection of the process parameters. The present paper reports on the simulation of titania powder formation by TiCl4 oxidation in an aerosol flow reactor. A commercially available fluid mechanics code is used for the detailed calculation of the fluid flow and the chemical reaction at non-isothermal conditions. This code is then interfaced with a model for aggregate particle dynamics neglecting the spread of the particle size distribution. The simulation shows the onset of the particle formation in the reactor and calculates the dynamic evolution of the aggregate particle size, number of primary particles per aggregate and the specific surface area throughout the reactor. The presented, newly developed calculation technique allows for the first time the simulation of particle formation processes under the authentic, complex conditions as found in actual aerosol reactors.

particle population fluid mechanics flame synthesized aerosols CFD modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bird R.B., W.E. Stewart & E.N. Lightfoot, 1960. Transport Phenomena. John Wiley & Sons, New York.Google Scholar
  2. Fluent User's Guide, Version 4.3, Fluent Inc., 1995. Computational Fluid Dynamic Software, Centerra Resource Park, 10 Cavendish Court, Lebanon, NH 03766.Google Scholar
  3. Johannessen T., S.E, Pratsinis & H. Livbjerg, 1998. Computational fluid-particle dynamics of flame synthesis of alumina particles by coagulation and sintering. Submitted to Chem. Engineer. Sci.Google Scholar
  4. Kim K.S. & S.E. Pratsinis, 1989. Modeling and analysis of modi-fied chemical vapor deposition of optical fiber preforms. Chem. Engineer. Sci. 44(11), 2475–2482.Google Scholar
  5. Kobata A., K. Kusakabe & S. Morooka, 1991. Growth and transformation of TiO2 crystallites in aerosol reactor. AIChE J. 37, 347–359.Google Scholar
  6. Kruis F.E., K.A. Kusters, S.E. Pratsinis & B. Scarlett, 1993. A simple model for the evolution of the characteristics of aggregate particles undergoing coagluation and sintering. Aerosol Sci. Tech. 19, 514–526.Google Scholar
  7. Okuyama K., D. Huang, J.H. Seinfeld, N. Tani & Y. Kousaka, 1991. Aerosol formation by rapid nucleation in the preparation of SiO2 thin film SiCl4 andO2 gases usingCVDprocess. Chem. Engineer. Sci. 46, 1545–1560.Google Scholar
  8. Patankar S.V., 1980. Numerical Heat Transfer and Fluid Flow. McGraw-Hill, New York.Google Scholar
  9. Pratsinis S.E., H. Bai, P. Biswas, M. Frenklach & S.V.R. Mastrangelo, 1990. Kinetics of TiCl4 Oxidation. J. Am. Ceram. Soc. 73, 2158–2162.Google Scholar
  10. Pratsinis S.E., T.T. Kodas, M.P. Dudukovic & S.K. Friedlander, 1986. Aerosol reactor design: Effect of reactor type and process parameters on product aerosol characteristcis. Ind. Eng. Chem. Process Des. Dev. 25(3), 634–642.Google Scholar
  11. Pratsinis S.E. & P.T. Spicer, 1998. Competition between gas phase and surface oxidation of TiCl4 during synthesis of TiO2 particles. Chem. Engineer. Sci. 53(10), 1861–1868.Google Scholar
  12. Schaefer D.W. & A.J. Hurd, 1990. Growth and structure of combustion aerosols. Aerosol Sci. Tech. 12, 876–890.Google Scholar
  13. Seinfeld J.H., 1986. Athmospheric Chemistry and Physics of Air Pollution. John Wiley & Sons, New York.Google Scholar
  14. Stratmann F. & E. Whitby, 1989. Heterogeneous condensation in cooled laminar tube flow: A comparison of two modeling techniques. J. Aerosol Sci. 20(8), 999–1002.Google Scholar
  15. Xiong Y. & S.E. Pratsinis, 1993. Formation of agglomerste particles by coagulation and sintering. J. Aerosol Sci. 24(3), 283–313.Google Scholar
  16. Xiong Y. & S.E. Pratsinis, 1991. Gas phase production of particles in reactive turbulent flows. J. Aerosol Sci. 22(5), 637–655.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • A. Schild
    • 1
  • A. Gutsch
    • 1
  • H. Mühlenweg
    • 1
  • S.E. Pratsinis
    • 2
  1. 1.Degussa-Hüls AG, Rodenbacher Chaussee 4HanauGermany
  2. 2.Swiss Federal Institute of Technology (ETH)Institute of Process Engineering (IVUK), ETH ZentrumZürichSwitzerland

Personalised recommendations