Making Complex Articulated Agents Dance

  • Maja J. Matarić
  • Victor B. Zordan
  • Matthew M. Williamson
Article

Abstract

We discuss the tradeoffs involved in control of complex articulated agents, and present three implemented controllers for a complex task: a physically-based humanoid torso dancing the Macarena. The three controllers are drawn from animation, biological models, and robotics, and illustrate the issues of joint-space vs. Cartesian space task specification and implementation. We evaluate the controllers along several qualitative and quantitative dimensions, considering naturalness of movement and controller flexibility. Finally, we propose a general combination approach to control, aimed at utilizing the strengths of each alternative within a general framework for addressing complex motor control of articulated agents.

articulated agent control motor control robotics animation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. G. Atkeson, “Learning Arm Kinematics and Dynamics,” Annual Review of Neuroscience vol. 12 pp. 157-183, 1989.Google Scholar
  2. 2.
    C. G. Atkeson and J. M. Hollerbach, “Kinematic Features of Unrestrained Vertical Arm Movements,” Journal of Neuroscience vol. 5 pp. 2318-2330, 1985.Google Scholar
  3. 3.
    N. I. Badler, B. A. Barsky, and D. Zeltzer, eds., Making Them Move: Mechanics, Control and Animation of Articulated Figures, Morgan Kaufmann Publishers: San Mateo, CA, 1991.Google Scholar
  4. 4.
    D. R. Baker and C. W. Wampler II, “On the Inverse Kinematics of Redundant Manipulators,” International Journal or Robotics Research vol. 7(2) pp. 3-21, 1988.Google Scholar
  5. 5.
    G. Beccari and S. Stramigioli, “Impedance Control as Merging Mechanism for a Behaviour-Based Architecture,” in Proceedings of the 1998 IEEE International Conference on Robotics and Automation, Leuven, Belgium, pp. 1429-1434, 1998.Google Scholar
  6. 6.
    M. Brady, J. M. Hollerbach, T. L. Johnson, T. Lozano-Perez, and M. T. Mason, eds., Robot Motion: Planning and Control, MIT Press, Cambridge, MA, 1982.Google Scholar
  7. 7.
    R. A. Brooks, Intelligence Without Reason, in Proceedings, IJCAI-91, Sydney, Australia, pp. 569-595, 1991.Google Scholar
  8. 8.
    M. F. Cohen, Interactive Spacetime Control for Animation, in Computer Graphics (Proceedings, SIGGRAPH '92), pp. 293-301, 1992.Google Scholar
  9. 9.
    J. E. Colgate and N. Hogan, “Robust control of dynamically interacting systems,” International Journal of Control Vol. 48(1) pp. 65-88, 1988.Google Scholar
  10. 10.
    J. J. Craig, Introduction to Robotics: Mechanics and Control, second edn, Addison-Wesley, Reading, MA, 1989.Google Scholar
  11. 11.
    T. Flash and N. Hogan, “The coordination of the arm movements: an experimentally confirmed mathematical model,” Journal of Neuroscience Vol. 7 pp. 1688-1703, 1985.Google Scholar
  12. 12.
    S. F. Giszter, F. A. Mussa-Ivaldi, and E. Bizzi, “Convergent force fields organized in the frog's spinal cord,” Journal of Neuroscience Vol. 13(2) pp. 467-491, 1993.Google Scholar
  13. 13.
    J. K. Hodgins, W. L. Wooten, D. C. Brogan, and J. F. O'Brien, Animating Human Athletics, in Computer Graphics (Proceedings, SIGGRAPH '95), Annual Conference Series, ACM SIGGRAPH, Addison Wesley, pp. 71-78, 1995.Google Scholar
  14. 14.
    N. Hogan, “Impedance Control: An Approach to Manipulation,” Journal of Dynamic Systems, Measurement, and Control Vol. 107 pp. 1-24, 1985.Google Scholar
  15. 15.
    M. Hollars, D. Rosenthal, and M. Sherman, SD/Fast User's Manual, Technical report, Symbolic Dynamics, Inc., 1991.Google Scholar
  16. 16.
    M. I. Jordan and D. E. Rumelhart, “Forward Models: supervised learning with a distal teacher,” Cognitive Science Vol. 16 pp. 307-354, 1992.Google Scholar
  17. 17.
    C. A. Klein and C. Huang, “Review of Pseudoinverse Control for Use with Kinematically Redundant Manipulators,” IEEE Transactions on Systems, Man and Cybernetics SMC-13(3) pp. 245-250, 1983.Google Scholar
  18. 18.
    J. Luh, M. Walker, and R. Paul, “On-line computational scheme for mechanical manipulators,” Transactions ASME Journal of Dynamic Systems, Measurements and Control Vol. 120 pp. 69-76, 1980.Google Scholar
  19. 19.
    M. Marjanović, B. Scassellati, and M. Williamson, Self-Taught Visually-Guided Pointing for a Humanoid Robot, in Fourth International Conference on Simulation of Adaptive Behavior, P. Maes, M. Matarić, J.-A. Meyer, J. Pollack, and S. Wilson, (Eds), The MIT Press, Cape Cod, MA, pp. 35-44, 1996.Google Scholar
  20. 20.
    M. Matarić and M. Pomplun, What do People Look at When Watching Human Movement?, Technical Report CS-97-194, Brandeis University, 1997.Google Scholar
  21. 21.
    M. J. Matarić, “Designing and Understanding Adaptive Group Behavior,” Adaptive Behavior Vol. 4(1) pp. 50-81, 1995.Google Scholar
  22. 22.
    M. J. Matarić, “Behavior-Based Control: Examples from Navigation, Learning, and Group Behavior,” Journal of Experimental and Theoretical Artificial Intelligence Vol. 9(2–3) pp. 323-336, 1997.Google Scholar
  23. 23.
    M. J. Matarić and M. Pomplun, “Fixation Behavior in Observation and Imitation of Human Movement,” Cognitive Brain Research, 7(2) 1998, 191-202.Google Scholar
  24. 24.
    M. J. Matarić, M. M. Williamson, J. Demiris, and A. Mohan, Behavior-Based Primitives for Articulated Control, in Fifth International Conference on Simulation of Adaptive Behavior, R. Pfiefer, B. Blumberg, J.-A. Meyer and S. W. Wilson, (Eds), MIT Press, Cambridge, MA, pp. 165-170, 1998.Google Scholar
  25. 25.
    M. J. Matarić, V. B. Zordan, and Z. Mason, Movement Control Methods for Complex, Dynamically Simulated Agents: Adonis Dances the Macarena, in Autonomous Agents, ACM Press, Minneapolis, St. Paul, MI, pp. 317-324, 1998.Google Scholar
  26. 26.
    P. Morasso, “Spatial control of arm movements,” Experimental Brain Research Vol. 42 pp. 223-227, 1981.Google Scholar
  27. 27.
    F. A. Mussa-Ivaldi, Nonlinear force Fields: A Distributed System of Control Primitives for Representing and Learning Movements, in Proceedings of the IEEE International Symposium on Computational Intelligence in Robotics and Automation, Monterey, CA, 1997.Google Scholar
  28. 28.
    F. A. Mussa-Ivaldi and S. F. Giszter, “Vector field approximations: a computational paradigm for motor control and learning,” Biological Cybernetics Vol. 67 pp. 491-500, 1992.Google Scholar
  29. 29.
    F. A. Mussa-Ivaldi, S. F. Giszter, and E. Bizzi, “Linear combinations of primitives in vertebrate motor control,” Proceedings of the National Academy of Sciences Vol. 91 pp. 7534-7538, 1994.Google Scholar
  30. 30.
    W. L. Nelson, “Physical Principles for Economies of Skilled Movements,” Biological Cybernetics Vol. 46 pp. 135-147, 1983.Google Scholar
  31. 31.
    J. T. Ngo and J. Marks, Spacetime Constraints Revisited, in Computer Graphics (Proceedings, SIGGRAPH '93), J. T. Kajiya, (Ed). pp. 343-350, 1993.Google Scholar
  32. 32.
    D. Pai, Programming Anthropoid Walking: Control and Simulation, Technical Report Computer Science Tech Report TR 90-1178, Cornell University, 1990.Google Scholar
  33. 33.
    R. P. Paul, Robot Manipulators: Mathematics, Programming, and Control, MIT Press, Cambridge, MA, 1981.Google Scholar
  34. 34.
    M. Raibert and J. Hodgins, Animation of Dynamic Legged Locomotion, in Computer Graphics (Proceedings, SIGGRAPH '91), pp. 349-356, 1991.Google Scholar
  35. 35.
    M. H. Raibert and J. J. Craig, “Hybrid Position/Force Control of Manipulators,” Journal of Dynamic Systems, Measurement, and Control Vol. 103 pp. 126-133, 1981.Google Scholar
  36. 36.
    J. K. Salisbury, Active Stiffness Control of a Manipulator in Cartesian Coordinates, in Proceedings or the 19th IEEE Conference on Decision and Control, pp. 95-100, 1980.Google Scholar
  37. 37.
    S. Schaal, Learning from demonstration, in Advances in Neural Information Processing Systems 9, M. Mozer, M. Jordan, and T. Petsche, (Eds), The MIT Press, pp. 1040-1046, 1997.Google Scholar
  38. 38.
    S. Schaal and C. C. Atkeson, 'Robot Juggling: An Implementation of Memory-Based Learning,” Control Systems Magazine Vol. 14 pp. 57-71, 1994.Google Scholar
  39. 39.
    J.-J. E. Slotine and W. Li, Applied nonlinear control, Prentice Hall, Englewood Cliffs, N.J., 1991.Google Scholar
  40. 40.
    Y. Uno, M. Kawato, and R. Suzuki, “Formation and Control of Optimal Trajetory in Human Arm Movement-Minimum Torque-Change Model,” Biological Cybernetics Vol. 61 pp. 89-101, 1989.Google Scholar
  41. 41.
    M. van de Panne and A. Lamouret, Guided Optimization for Balanced Locomotion, in Computer Animation and Simulation '95, D. Terzopoulos and D. Thalmann, (Eds). Eurographics, Springer-Verlag, pp. 165-177. ISBN 3-211-82738-2, 1995.Google Scholar
  42. 42.
    D. E. Whitney, “Resolved motion rate control of manipulators and human prostheses,” IEEE Transactions on Man-Machine Systems Vol. 10(2) pp. 47-53, 1969.Google Scholar
  43. 43.
    D. E. Whitney, The mathematics of coordinated control of prosthetic arms and manipulators, in Robot Motion: planning and control, M. Brady, J. M. Hollerbach, T. L. Johnson, T. Lozano-Pérez, and M. T. Mason, (Eds), MIT Press, pp. 287-304, 1982.Google Scholar
  44. 44.
    M. Williamson, Postural Primitives: Interactive Behavior for a Humanoid Robot Arm, in Fourth International Conference on Simulation of Adaptive Behavior, P. Maes, M. Matarić, J.-A. Meyer, J. Pollack, and S. Wilson, (Eds), The MIT Press, Cape Cod, MA, pp. 124-131, 1996.Google Scholar
  45. 45.
    M. M. Williamson, Rhythmic robot control using oscillators, in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '98). 1998.Google Scholar
  46. 46.
    A. Witkin and M. Kass, Spacetime Constraints, in Computer Graphics (Proceedings, SIGGRAPH '88), pp. 159-168, 1988.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Maja J. Matarić
    • 1
  • Victor B. Zordan
    • 2
  • Matthew M. Williamson
    • 3
  1. 1.Computer Science DepartmentUniversity of Southern CaliforniaLos Angeles
  2. 2.College of ComputingGeorgia Institute of TechnologyAtlanta
  3. 3.MIT Artificial Intelligence LabMassachusetts Institute of TechnologyCambridge

Personalised recommendations