Journal of Nanoparticle Research

, Volume 2, Issue 3, pp 237–248

Mechanics and Friction at the Nanometer Scale

  • Michael R. Falvo
  • Richard Superfine
Article

Abstract

In this overview, we will give an introduction to experiments in which manipulation is used a means of uncovering the intrinsic response and dynamical behavior of small objects. Experiments done on individual particles reveal new and rich behaviors that are inaccessible to averaging methods. Experiments exploring the stiffness and toughness of carbon nanotubes will be presented showing that nanometer scale engineered materials can far outperform current engineering materials. Through AFM manipulation, imaging and force measurements, the stiffness of this material was found to equal or exceed diamond. Their toughness is also extraordinary. Due to their near crystalline perfection, carbon nanotubes are able to undergo strains exceeding 15% during bending without damage. Through AFM manipulation experiments, these large deformations have been shown to be highly reversible. Experiments in which the lateral force of manipulation of small objects across surfaces is measured show that friction at the nanometer scale occurs without wear processes and is an intrinsic property of the particular interface. Results are also presented showing anisotropic behavior in friction and movement due to commensurate lattice effects. At the nanometer scale, the contacting surfaces can be nearly perfect so that commensurate effects are not partially averaged out by many differently oriented domains. It has been shown that friction can very over an order of magnitude depending on the relative orientation of the contacting surfaces. The relative orientation of object and substrate lattices also can determine the modes of motion. In some cases the particle is confined to move in one direction. In other cases the relative orientation determines whether the particle rolls, rotates in-plane or slides. These effects may have implications on the fundamental mechanisms of friction. They provide a laboratory for testing different geometrical configurations of atoms sliding on atoms. The results may also have implications in the design of nanometer scale electromechanical mechanisms.

nanoparticles nanotubes manipulation AFM friction tribology mechanics nanometer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A-Hassan E., W.F. Heinz, M.D. Antonik, N.P. D'Costa, S. Nageswaran, C.A. Schoenenberger & J.H. Hoh, 1998. Relative microelastic mapping of living cells by atomic force microscopy. Biophys. J. 74, 1564-1578.PubMedGoogle Scholar
  2. Bardotti L., P. Jensen, A. Hoareau, M. Treilleux & B. Cabaud, 1995. Experimental-observation of fast diffusion of large antimony clusters on graphite surfaces. Phys. Rev. Lett. 74, 4694-4697.PubMedGoogle Scholar
  3. Baur C., A. Bugacov, B.E. Koel, A. Madhukar, N. Montoya, T.R. Ramachandran, A.A.G. Requicha, R. Resch & P. Will, 1998. Nanoparticle manipulation by mechanical pushing: underlying phenomena and real-time monitoring. Nanotechnology 9, 360-364.Google Scholar
  4. Bhushan B., J.N. Israelachvili & U. Landman, 1995. Nanotribology: fricion, wear, and lubrication at the atomic scale. Nature 374, 607-616.Google Scholar
  5. Binnig G., C.F. Quate & C. Gerber, 1986. Atomic force microscope. Phys. Rev. Lett. 56, 930-933.CrossRefPubMedGoogle Scholar
  6. Binnig G., H. Rohrer, C. Berber & E. Weibel, 1982. Phys. Rev. Lett. 49, 57-60.Google Scholar
  7. Bowden F.P. & D. Tabor, 1956. Friction and Lubrication. Londone, Methuen.Google Scholar
  8. Bower C., R. Rosen, L. Jin, J. Han & O. Zhou, 1999. Deformation of carbon nanotubes in nanotube-polymer composites. Appl. Phys. Lett. 74, 3317-3319.Google Scholar
  9. Buldum A. & J.P. Lu, 1999. Atomic scale sliding and rolling of carbon nanotubes. Phys. Rev. Lett. 83, 5050-5053.Google Scholar
  10. Carpick R.W., N. Agrait, D.F. Ogletree and M. Salmeron, 1996. Variation of the interfactial shear strength and adhesion of a nanometer-sized contact. Langmuir 12, 3334-3340.Google Scholar
  11. Dayo A., W. Alnasrallah & J. Krim, 1998. Superconductivity dependent sliding friction. Phys. Rev. Lett. 80, 1690-1693.Google Scholar
  12. Dowson D., 1979. History of Tribology. London, Longman Group Limited.Google Scholar
  13. Dresselhaus M.S., G. Dresselhaus & P.C. Eklund, 1996. Science of Fullerenes and Carbon Nanotubes. San Diego, Academic Press.Google Scholar
  14. Drexler K.E., 1992. Nanosystems. New York, John Wiley and Sons, Inc.Google Scholar
  15. Ebbesen T.W., 1997. Properties: Experimental Results. Carbon Nanotubes: Preparation and Properties. T.W. Ebbesen. Boca Raton, CRC Press, pp. 225-248.Google Scholar
  16. Ebbesen T.W. & P.M. Ajayan, 1992. Large scale synthesis of carbon nanotubes. Nature 358, 16.Google Scholar
  17. Eigler D.M. & E.K. Schweizer, 1990. Positioning single atoms with a scanning tunneling microcope. Nature 344, 524-526.Google Scholar
  18. Enachescu M., R.J.A. van den Oetelaar, R.W. Carpick, D.F. Ogletree, C.F.J. Flipse & M. Salmeron, 1998. Atomic force microscopy study of an ideally hard contact: The diamond( 111) tungsten carbide interface. Phys. Rev. Lett. 81, 1877-1880.Google Scholar
  19. Enachescu M., R.J.A. van den Oetelaar, R.W. Carpick, D.F. Ogletree, C.F.J. Flipse & M. Salmeron, 1999. Observation of proportionality between friction and contact area at the nanometer scale. Tribol. Lett. 7, 73-78.Google Scholar
  20. Falvo M., 1997. Ph.D. thesis. University of North Carolina, 1997.Google Scholar
  21. Falvo M.R., G.J. Clary, R.M.I. Taylor, V. Chi, F.P.J. Brooks, S. Washburn & R. Superfine, 1997a. Bending and buckling of carbon nanotubes under large strain. Nature 389, 582-584.PubMedGoogle Scholar
  22. Falvo M.R., R.M. Taylor II, A. Helser, V. Chi, F.P. Brooks Jr., S. Washburn & R. Superfine, 1999. Nanometre-scale rolling and sliding of carbon nanotubes. Nature 397, 236-238.PubMedGoogle Scholar
  23. Falvo M.R., S. Washburn, R. Superfine, M. Finch, F.P.J. Brooks, V. Chi & R.M.I. Taylor, 1997b. Manipulation of individual viruses: friction and mechanical properties. Biophys. J. 72, 1396-1403.PubMedGoogle Scholar
  24. Florin E.-L., V.T. Moy & H.E. Gaub, 1994. Adhesion forces between individual ligand-receptor pairs. Science 264, 415-417.PubMedGoogle Scholar
  25. Globus A., W. Bauschlicher Jr., J. Han, R.L. Jaffe, C. Levit & Srivastiava, 1998. Machine phase fullerene nanotechnology. Nanotechnology 9, 192-199.Google Scholar
  26. Greenwood J.A. & J.P.B.Williamson, 1966. Contact of nominally flat surfaces. Proc. R. Soc. Lond. A 295, 300-319.Google Scholar
  27. Harrison J.A., C.T. White, R.J. Colton and D.W. Brenner, 1992. Molecular-dynamics simulations of atomic-scale friction of diamond surfaces. Phys. Rev. B 46, 9700-9708.Google Scholar
  28. He G., M.H. Muser & M.O. Robbins, 1999. Adsorbed layers and the origin of static friction. Science 284, 1650-1652.PubMedGoogle Scholar
  29. Hertel T., R. Martel & P. Avouris, 1998. Manipulation of individual carbon nanotubes and their interactions with surfaces. J.Phys. Chem. B 102, 910-915.Google Scholar
  30. Hirano H., K. Shinjo, R. Kaneko & Y. Murata, 1991. Anisotropy of frictional forces in muscovite mica. Phys. Rev. Lett. 67, 2642-2645.CrossRefPubMedGoogle Scholar
  31. Iijima S., 1991. Helical microtubules of graphitic carbon. Nature 354, 56-58.CrossRefGoogle Scholar
  32. Iijima S., C. Brabec, A. Maiti & J. Bernholc, 1996. Structural flexibility of carbon nanotubes. J. Chem. Phys. 104, 2089-2092.Google Scholar
  33. Israelachvili J.N., P.M. McGuiggan & A.M. Homola, 1988. Dynamic properties of molecularly thin liquid-Films. Science 240, 189-191.Google Scholar
  34. Jung T.A., R.R. Schlitter, J.K. Gimzewski, H. Tang & C. Joachim, 1995. Controlled room-temperature positioning of individual molecules: molecular flexure and motion. Science 271, 181-184.Google Scholar
  35. Junno T., K. Deppert, L. Montelius & L. Samuelson, 1995. Controlled manipulations of nanoparticles with an atomic force microscope. Appl. Phys. Lett. 66, 3627-3629.Google Scholar
  36. Kelly A., 1986. Strong Solids. London, Oxford University Press.Google Scholar
  37. Lantz M.A., S.J. ÓShear, M.E. Welland & K.L. Johnson, 1997. Atomic-force-microscope study of contact area and friciton on NbSe2. Phys. Rev. B 55, 10776-10785.Google Scholar
  38. Legtenberg R., H.A.C. Tilmans, J. Elders & M. Elwenspoek, 1994. Stiction of surface micromachined structures after rinsing and drying: model and investigation of adhesion mechanisms. Sensors. Actuator. A 43, 230-238.Google Scholar
  39. Liley M., D. Gourdon, D. Stamou, U. Meseth, T.M. Fischer, C. Lautz, H. Stahlberg, H. Vogel, N.A. Burnham & C. Duschl, 1998. Friction anisotropy and asymmetry of a compliant monolayer induced by a small molecular tilt. Science 280, 273-275.PubMedGoogle Scholar
  40. Liu J., G. Rinzler, H. Dai, J.H. Hafner, R.K. Bradley, J.P. Boul, A. Lu, T. Iverson, K. Shelimov, C.B. Huffman, F. Rodriguez-Macias, Y.-S. Shon, R.L. Lee, D.T. Colbert & R.E. Smalley, 1998. Fullerene pipes. Science 280, 1253-1256.CrossRefGoogle Scholar
  41. Luedtke W.D. & U. Landman, 1999. Slip diffusion and Levy flights of an adsorbed gold nanocluster (vol. 82, p. 3835, 1999). Phys. Rev. Lett. 83, 3835-3838.Google Scholar
  42. Luthi R., E. Meyer, H. Haefke, L. Howald, W. Gutmannsbauer & H.-J. Guntherodt, 1994. Sled-type motion on the nanometer scale: determination of dissipation and cohesive energies of C60. Science 266, 1979-1981.Google Scholar
  43. Mak C. & J. Krim, 1998. Quartz-crystal microbalance studies of the velocity dependence of interfacial friction. Phys. Rev. B-Condens. Matter 58, 5157-5159.Google Scholar
  44. Manoharan H.C., C.P. Lutz & D.M. Eigler, 2000. Quantum mirages formed by coherent projection of electronic structure. Nature 403, 512-515.PubMedGoogle Scholar
  45. Mate C.M., 1995. Force microscopy studies of the molecular origins of friction and lubrication. IBM J. Res. Develop. 39, 617-626.Google Scholar
  46. Mate M.C., G.M. McClelland, R. Erlandsson & S. Chiang, 1987. Atomic-scale friction of a tungsten tip on a graphite surface. Phys. Rev. Lett. 59, 1942-1945.PubMedGoogle Scholar
  47. Meyer E., R. Overney, D. Brodbeck, L. Howald, R. Luthi, J. Frommer & H.J. Guntherodt, 1992. Friction and wear of Langmuir-blodgett films observed by friction force microscopy. Phys. Rev. Lett. 69, 1777-1780.PubMedGoogle Scholar
  48. Moy V.T., E.L. Florin & H.E. Gaub, 1994. Intermolecular forces and energies between ligands and receptors. Science 266, 257-259.PubMedGoogle Scholar
  49. Oberhauser A.F., P.E. Marszalek, H.P. Erickson & J.M. Fernandez, 1998. The molecular elasticity of the extracellular matrix protein tenascin. Nature 393, 181-185.PubMedGoogle Scholar
  50. Overney R.M., E. Meyer, J. Frommer, D. Brodbeck, R. Luthi, L. Howald, H.J. Guntherodt, M. Fujihira, H. Takano & Y. Gotoh, 1992. Friction measurements on phase-separated thin-films with a modified atomic force microscope. Nature 359, 133-135.Google Scholar
  51. Overney R.M., H. Takano, M. Fujihira, W. Paulus & H. Ringsdorf, 1994. Anisotropy in friction and molecular stick-slip motion. Phys. Rev. Lett. 72, 3546-3549.PubMedGoogle Scholar
  52. Paulson S., M.R. Falvo, N. Snider, A. Helser, T. Hudson, A. Seeger, R.M. Taylor, R. Superfine & S. Washburn, 1999. In situ resistance measurements of strained carbon nanotubes. Appl. Phys. Lett. 75, 2936-2938.Google Scholar
  53. Persson B.N.J., 1998. Sliding Friction: Physical Principles and Applications. Berlin, Springer-Verlag.Google Scholar
  54. Poncharal P., Z.L. Wang, D. Ugarte & W.A. de Heer, 1999. Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283, 1513-1516.PubMedGoogle Scholar
  55. Resch R., D. Lewis, S. Meltzer, N. Montoya, B.E. Koel, A. Madhukar, A.A.G. Requicha & P. Will, 2000. Manipulation of gold nanoparticles in liquid environments using scanning force microscopy. Ultramicroscopy 82, 135-139.PubMedGoogle Scholar
  56. Rief M., M. Gautel, F. Oesterhelt, J.M. Fernandez & H.E. Gaub, 1997. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276, 1109-1112.PubMedGoogle Scholar
  57. Sasaki N., M. Tsukada, S. Fujisawa, Y. Sugawara, S. Morita & K. Kobayashi, 1998. Load dependence of the frictional-force microscopy image pattern of the graphite surface. Phys. Rev. B-Condens. Matter 57, 3785-3786.Google Scholar
  58. Sheehan P.E. & C.M. Lieber, 1996. Nanotribology and nanofabrication of MoO3 structures by atomic force microscopy. Science 272, 1158-1161.PubMedGoogle Scholar
  59. Singer I.L., R.N. Bolster, J. Wegand, S. Fayeulle & B.C. Stupp, 1990. Hertzian stress contribution to low friction behavior of thin Mos2 coatings. Appl. Phys. Lett. 57, 995-997.Google Scholar
  60. Sokoloff J.B., 1990. Theory of energy dissipation in sliding crystal surfaces. Phys. Rev. B 42, 760-765.Google Scholar
  61. Sorensen M.R., K.W. Jacobsen & P. Stoltze, 1996. Simulations of atomic-scale sliding friction. Phys. Rev. B 53, 2101-2112.Google Scholar
  62. Thess A., R. Lee & R.E. Smalley, 1996. Crystalline ropes of metallic carbon nanotubes. Science 273, 483.PubMedGoogle Scholar
  63. Tomanek D., 1993. Theory of atomic-scale friction. Scanning Tunneling Microscopy 3. R.Wiesendanger & H.-J. Guntherodt. Berlin, Springer-Verlag, pp. 269-292.Google Scholar
  64. Walters D.A., L.M. Ericson, M.J. Casavant, J. Liu, D.T. Colbert, K.A. Smith & R.E. Smalley, 1999. Elastic strain of freely suspended single-wall carbon nanotube ropes. Appl. Phys. Lett. 74, 3803-3805.Google Scholar
  65. Wang S.C., U. Kurpick & G. Ehrlich, 1998. Surface diffusion of compact and other clusters: Ir-x on Ir(111). Phys. Rev. Lett. 81, 4923-4926.Google Scholar
  66. Weisenhorn A.L., J.E. MacDougall, S.A. Gould, S.D. Cox, W.S. Wise, J. Massie, P. Maivald, V.B. Elings, G.D. Stucky & P.K. Hansma, 1990. Imaging and manipulating molecules on a zeolite surface with an atomic force microscope. Science 247, 1330-1333.Google Scholar
  67. Wen J.M., S.L. Chang, J.W. Burnett, J.W. Evans & P.A. Thiel, 1994. Diffusion of large 2-dimensional Ag clusters on Ag(100). Phys. Rev. Lett. 73, 2591-2594.PubMedGoogle Scholar
  68. Wong E.W., P.E. Sheehan & C.M. Lieber, 1997. Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277, 1971-1975.Google Scholar
  69. Yakobson B.I., C.J. Brabec & J. Bernholc, 1996. Nanomechanics of carbon tubes: instabilities beyond the linear response. Phys. Rev. Lett. 76, 2511-2514.PubMedGoogle Scholar
  70. Yakobson B.I., M.P. Campbell, C.J. Brabec & J. Bernholc, 1997. Tensile strength, atomistics of fracture, and C-chain unraveling in carbon nanotubes. J. Comput. Aided Mat. Des. 3, 173.Google Scholar
  71. Yoshizawa H., Y.-L. Chen & J. Israelachvili, 1993. Fundamental mechanism of interfacial friction. 1. Relation between adhesion and friction. J. Phys. Chem. 97, 4128-4140.Google Scholar
  72. Yu M.F., B.S. Files, S. Arepalli & R.S. Ruoff, 2000. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84, 5552-5555.PubMedGoogle Scholar
  73. Zhou O., R.M. Fleming, D.W. Murphy, C.H. Chen, R.C. Haddon, A.P. Ramirez & S.H. Glarum, 1994. Defects in carbon nanostructures. Science 263, 1744-1747.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Michael R. Falvo
    • 1
  • Richard Superfine
    • 1
  1. 1.Department of Physics and AstronomyThe University of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations