Advertisement

Journal of Nanoparticle Research

, Volume 1, Issue 2, pp 253–265 | Cite as

Aerosol Catalysis on Nickel Nanoparticles

  • Alfred P. Weber
  • Martin Seipenbusch
  • Christoph Thanner
  • Gerhard Kasper
Article

Abstract

Nickel nanoparticles produced by spark discharges were used as aerosol catalyst for the formation of methane. The available surface area of the particles was determined using different methods. It was found that the surface area available for nitrogen adsorption and, therefore, for the methanation reaction remained virtually constant during restructuring of the agglomerates while the surface area based on the mobility was significantly reduced. In general, the reaction parameters such as activation energy and reaction rates agree well with the values for single nickel crystals and foils. At temperatures above 350°C the activation energy and the photoelectric activity of the particles decrease indicating the formation of graphite on the particle surface. Also the change of the work function points to the build up of multiple layers of graphite on the particle surface. The surprisingly low temperature for the surface deactivation may indicate an enhanced formation of carbon atoms at the surface.

nanoparticles surface state reactivity aerosol catalysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alstrup I., 1995. On the kinetics of CO methanation on nickel surfaces. J. Catal. 151, 216–225.Google Scholar
  2. Amman M., U. Baltensperger, U.K. Bochert, B. Eichler, H.W. Gäggeler, D.T. Jost, A. Türler & A.P. Weber, 1995. Study of HI, HBr and NO2 adsorption on graphite and silver particles using short-lived isotopes. J. Aerosol Sci. 26, 61–70.Google Scholar
  3. Balandin A.A., 1969. Modern state of the multiplet theory of heterogeneous catalysis. Adv. Catal. Rel. Sub. 19, 1–210.Google Scholar
  4. Burtscher H. & A. Schmidt-Ott, 1982. Enormous enhancement of van der Waals forces between small silver particles. Phys. Rev. Lett. 48, 1734.Google Scholar
  5. Dalmon J.A. & G.A. Martin, 1981. Proc. 7th Int. Congr. Catal., Tokyo (Japan), p. 402.Google Scholar
  6. Glikin M.A., 1996. Aerosol catalysis. Theoretical Foundations of Chemical Engineering 30, 390–394.Google Scholar
  7. Goodman D.W., R.D. Kelley, T.E. Madey & J.T. Yates, Jr., 1980. Kinetics of the hydrogenation ofCOover a single crystal nickel catalyst. J. Catal. 63, 226–234.Google Scholar
  8. Gutsch A., 1995. Agglomeration feinster gasgetragener Partikeln unter dem Einflusselektrischer Kräfte. Dissertation, Universit¨at Karlsruhe, Germany.Google Scholar
  9. Haury G., S. Jordan & C. Hofmann, 1978. Experimental investigation of the aerosol-catalyzed oxidation of SO2 under atmospheric conditions. Atmospheric Environment 12, 281–287.Google Scholar
  10. Hering S.V. & M.R. Stolzenburg, 1995. On-line determination of particle size and density inthe nanometer size range. Aerosol Sci. Technol. 23, 155–173.Google Scholar
  11. Kelly R.D. & S. Semancik, 1983. J. Catal. 84, 248.Google Scholar
  12. Kerker M., D.S. Wang & H. Chew, 1980. Appl. Opt. 19, 3373.Google Scholar
  13. Kuijpers E.G.M., A.J.H.M. Kock, M.C.M.A. Nieuwesteeg & J.W. Geus, 1985. Disproportionation of CO on Ni/SiO2: Kinetics and nature of the deposited carbon. J. Catal. 95, 13–20.Google Scholar
  14. Leonardi A., 1991. Feinste Schwebeteilchen aus Dieselmotoren. Dissertation ETH No. 9515, Switzerland.Google Scholar
  15. Müller U., A. Schmidt-Ott & H. Burtscher, 1987. First Measurements of Gas Adsorption to Free Ultrafine Particles: O2 on Ag. Phys. Rev. Lett. 58, 1684–1687.Google Scholar
  16. Müller U., A. Schmidt-Ott & H. Burtscher, 1988. Photoelectric quantum yield of free silver particles near threshold. Z. Phys. B – Condensed Matter 73, 103–106.Google Scholar
  17. Polizzotti R.S. & J.A. Schwarz, 1982. Hydrogenation of CO to methane: Kinetic studies on polycrystalline nickel foils. J. Catal. 77, 1–15.Google Scholar
  18. Schleicher B., H. Burtscher & H.-C. Siegmann, 1993. Photoelectric quantum yield of nanometer metal particles. Appl. Phys. Lett. 63, 1191–1193.Google Scholar
  19. Schmidt-Ott A., 1988. New approaches to in situ characterization of ultrafine agglomerates. J. Aerosol Sci. 19, 553–563.Google Scholar
  20. Schmidt-Ott A., U. Baltensperger, D.T. Jost & H.W. Gäggeler, 1990. Scaling behavior of physical parameters describing agglomerates. J. Aerosol Sci. 21, 711.Google Scholar
  21. Schwyn S., E. Garwin & A. Schmidt-Ott, 1988. Aerosol generation by spark discharge, J. Aerosol Sci. 19, 639–642.Google Scholar
  22. Somorjai G.A., 1981. Catalytic hydrogenation of carbon monoxide. In: Chemistry in Two Dimensions: Surfaces. Cornell University Press, Ithaca NY, pp. 516–544.Google Scholar
  23. Stier J., 1997. Untersuchungen des physikalischen Verhaltens von Aerosolen und deren heterogener Reaktionen mit Stickoxiden in einer grossen Reaktionskammer. Dissertation, RWTH Aachen, Germany.Google Scholar
  24. Tahri A., A. Amariglio & H. Amariglio, 1994. Thermodésorption et thermoréactions avec l'hydrogène du monoxyde de carbone adsorbé sur un catalyseur au nickel. I. Mécanisme de la méthanation. J. Chim. Phys. 91, 1490–1506.Google Scholar
  25. Tavares M.T., I. Alstrup, G.A. Bernardo & J.R. Rostrup-Nielsen, 1996. Carbon formation and CO methanation on silicasupported nickel and nickel–copper catalysts in CO C H2 Mixtures, J. Catal. 158, 402–410.Google Scholar
  26. Van de Hulst H.C., 1957. Light Scattering by Small Particles. John Wiley & Sons, New York. pp. 63.Google Scholar
  27. Vannice M.A., 1975. The Catalytic synthesis of hydrocarbons from H2/CO mixtures over the group VIII metals. I. The specific activities and product distributions of supported metals. J. Catal. 37, 449–461; II. The kinetics of the methanation reaction over supported metals. J. Catal. 37, 462–473.Google Scholar
  28. Vannice M.A., 1976. The Catalytic synthesis of hydrocarbons from carbon monoxide and hydrogen. Catal. Rev. Sci. Eng. 14, 153–191.Google Scholar
  29. Weber A.P., 1992. Characterization of the geometrical properties of agglomerated aerosol particles. Paul Scherrer Insitute Report 129, ISSN 1019–0643, Switzerland.Google Scholar
  30. Weber A.P., U. Baltensperger, H.W. G¨aggeler & A. Schmidt-Ott, 1996. In situ characterization and structure modification of agglomerated aerosol particles. J. Aerosol Sci. 27, 915–929.Google Scholar
  31. Weber A.P. & S.K. Friedlander, 1997. In situ determination of the activation energy for restructuring of nanometer aerosol agglomerates. J. Aerosol Sci. 28, 179–192.Google Scholar
  32. Weber A.P., K. Burkert & G. Kasper, 1998. In situ characterization of the surface state of nanoparticles. AIChE proceedings '98, Miami Beach, Advanced Technologies for Particle Processing, Vol. I, pp. 285–290.Google Scholar
  33. Wood D.M., 1981. Classical size dependence of thework function of small metallic spheres. Phys. Rev. Lett. 46, 749.Google Scholar
  34. Wu M.K. & S.K. Friedlander, 1993. Note on the power law equation for fractal-like aerosol agglomerates. J. Colloid Interface Sci. 159, 246–248.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Alfred P. Weber
    • 1
  • Martin Seipenbusch
    • 1
  • Christoph Thanner
    • 1
  • Gerhard Kasper
    • 1
  1. 1.Institut für Mechanische Verfahrenstechnik und MechanikUniversität Karlsruhe (TH)KarlsruheGermany

Personalised recommendations