Advertisement

Journal of Nanoparticle Research

, Volume 2, Issue 1, pp 17–27 | Cite as

Development of Nanosensors and Bioprobes

  • Tuan Vo-Dinh
  • Guy D. Griffin
  • Jean Pierre Alarie
  • Brian Cullum
  • Bobby Sumpter
  • Donald Noid
Article

Abstract

We describe the development and application of nanosensors having bioreceptor probes for bioanalysis. The nanoprobes were fabricated with optical fibers pulled down to tips having distal end sizes of approximately 30–60 nm. The use of two different types of receptors was investigated. Fiberoptic nanoprobes were covalently bound either with bioreceptors, such as antibodies, or with other receptors, such as cyclodextrins that are selective for the size and chemical structure of the analyte molecules. Theoretical calculations were performed to model the binding of beta-cyclodextrin with pyrene and 5,6-benzoquinoline, and to illustrate the possibility of comparing experimental data with theoretical data. The antibody-based nanoprobe was used for in situ measurements of benzopyrene tetrol in single cells. The performance of the nanosensor is illustrated by intracellular measurements performed on a rat liver epithelial cell line (Clone 9) used as the model cell system. The usefulness and potential of these nanotechnology-based biosensors in biological research and applications are discussed.

nanosensor nanoprobe nanotechnology biosensor antibody benzopyrene tetrol cyclodextrin cancer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alarie J.P. & T. Vo-Dinh, 1991. Talanta 38, 529.Google Scholar
  2. Alarie J.P., J.R. Bowyer, M.J. Sepaniak, A.M. Hoyt & T. Vo-Dinh, 1990. Anal. Chim. Acta 236, 237.Google Scholar
  3. Alarie J.P., M.J. Sepaniak & T. Vo-Dinh, 1991. Anal. Chim. Acta 229, 69.Google Scholar
  4. Belletete M., M. LeClerc & G. Durocher, 1994. J. Phys. Chem. 98, 9450.Google Scholar
  5. Betzig E. & R.J. Chichester, 1993. Science 262, 1422.Google Scholar
  6. Betzig E., J.K. Trautman, T.D. Harris, J.S.Weiner, R.L. Kostelak, 1991. Science 251, 1468.Google Scholar
  7. Armstrong D.W., 1985. US Patent 4,539,399, 3 September 1985, Chem. Abstract 103, 226754f.Google Scholar
  8. Deckert V., D. Zeisel, R. Zenobi & T.Vo-Dinh, 1998. Anal. Chem. 70, 2646.Google Scholar
  9. Diamond D., ed., 1998. Chemical and Biological Sensors. Wiley, New York.Google Scholar
  10. El-fouley M.H., J.E. Trosko & C.C. Chang, 1987. Exp. Cell Res. 168, 422.PubMedGoogle Scholar
  11. Santella R.M., C.D. Lin, W.L. Cleveland & Winstein I.B., 1984. Carcinogenesis 5, 373.PubMedGoogle Scholar
  12. Tan W., Z-Y. Shi & R. Kopelman, 1992a. Anal. Chem. 64, 2985.Google Scholar
  13. Tan W., Z-Y. Shi, S. Smith, D. Birnbaum & R. Kopelman, 1992b. Science 258, 778.PubMedGoogle Scholar
  14. Tromberg B.J., M.J. Sepaniak, J.P. Alarie, T. Vo-Dinh & R.M. Santella, 1988. Anal. Chem. 60, 1901.PubMedGoogle Scholar
  15. Vo-Dinh T., B.J. Tromberg, G.D. Griffin, K.R. Ambrose, M.J. Sepaniak, & E.M. Gardenshire, 1987. Appl. Spectrosc. 41, 735.Google Scholar
  16. Vo-Dinh T., G.D. Griffin & M.J. Sepaniak, 1990. Fiberoptic immunosensors. In: Wolfbeis O.S. ed. Chemical Sensors and Biosensors. CRC Press Boca Raton, Florida, pp. 217-257.Google Scholar
  17. Vo-Dinh T., J.P. Alarie, N. Isola, D. Landis, A.L. Wintenberg & N.M. Ericson, 1999. Anal. Chem. 71, 358.PubMedGoogle Scholar
  18. Wolfbeis O.S., 1991. Fiber Optic Chemical Sensors and Biosensors. Vol. 1. CRC Press, Boca Raton.Google Scholar
  19. Zeisel D., V. Deckert, R. Zenobi & T. Vo-Dinh, 1998. Chem. Phys. Lett. 283, 381.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Tuan Vo-Dinh
    • 1
  • Guy D. Griffin
    • 2
  • Jean Pierre Alarie
    • 2
  • Brian Cullum
    • 2
  • Bobby Sumpter
    • 2
  • Donald Noid
    • 2
  1. 1.Oak Ridge National LaboratoryOak RidgeUSA
  2. 2.Oak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations