Journal of Nanoparticle Research

, Volume 2, Issue 4, pp 401–411 | Cite as

Electron Spins in Quantum Dots as Quantum Bits

  • Daniel Loss
  • Guido Burkard
  • David P. DiVincenzo

Abstract

The creation, coherent manipulation, and measurement of spins in nanostructures open up completely new possibilities for electronics and information processing, among them quantum computing and quantum communication. We review our theoretical proposal for using electron spins in quantum dots as quantum bits, explaining why this scheme satisfies all the essential requirements for quantum computing. We include a discussion of the recent measurements of surprisingly long spin coherence times in semiconductors. Quantum gate mechanisms in laterally and vertically tunnel-coupled quantum dots and methods for single-spin measurements are introduced. We discuss detection and transport of electronic EPR pairs in normal and superconducting systems.

quantum computing spin spintronics spin coherence quantum dots 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shor P.W., 1994. In: Proc. 35th Symposium on the Foundations of Computer Science (IEEE Computer Society Press), p. 124.Google Scholar
  2. 2.
    Grover L.K., 1997. Phys. Rev. Lett. 79, 325.Google Scholar
  3. 3.
    DiVincenzo D.P. and Loss D., 1999. J. Mag. Magn. Matl. 200, 202; cond-mat/9901137.Google Scholar
  4. 4.
    DiVincenzo D.P., Burkard G., Loss D. and Sukhorukov E., 1999. In: Kulik I.O. and Ellialtoglu R. eds. Quantum Mesoscopic Phenomena and Mesoscopic Devices in Microelectronics, NATO ASI Vol. C559, p. 399, Turkey, June 13–25; see cond-mat/99112445.Google Scholar
  5. 5.
    Shor P.W., 1995. Phys. Rev. A 52, 2493; Steane A.M., 1996. Phys. Rev. Lett. 77, 793; DiVincenzo D.P. and Shor P.W., 1996. Phys. Rev. Lett. 77, 3260.Google Scholar
  6. 6.
    Cirac J.I. and Zoller P., 1995. Phys. Rev. Lett. 74, 4091; Monroe C. et al., ibid. 75, 4714.Google Scholar
  7. 7.
    Turchette Q.A. et al., 1995. Phys. Rev. Lett. 75, 4710.Google Scholar
  8. 8.
    Cory D., Fahmy A. and Havel T., 1997. Proc. Nat. Acad. Sci. USA 94, 1634; Gershenfeld N.A. and Chuang I.L., 1997. Science 275, 350.Google Scholar
  9. 9.
    Loss D. and DiVincenzo D.P., 1998. Phys. Rev. A 57, 120. cond-mat/9701055.Google Scholar
  10. 10.
    Shnirman A., Schön G. and Hermon Z., 1997. Phys. Rev. Lett. 79, 2371.Google Scholar
  11. 11.
    Averin D.V., 1998. Solid State Commun. 105, 659.Google Scholar
  12. 12.
    Kane B., 1998. Nature 393, 133.Google Scholar
  13. 13.
    Ioffe L.B. et al., 1999. Nature 398, 679.Google Scholar
  14. 14.
    Orlando T.P. et al., 1999. Phys. Rev. B 60, 15 398.Google Scholar
  15. 15.
    Jacak L., Hawrylak P. and Wójs A., 1997. Quantum Dots, Springer, Berlin.Google Scholar
  16. 16.
    Tarucha S. et al., 1996. Phys. Rev. Lett. 77, 3613.Google Scholar
  17. 17.
    Kouwenhoven L.P. et al., 1997. In: Sohn L.L.,Kouwenhoven L.P. and Schön G. eds. Proceedings of the ASI on Mesoscopic Electron Transport, Kluwer.Google Scholar
  18. 18.
    Waugh F.R. et al., 1995. Phys. Rev. Lett. 75, 705; Livermore, C. et al., 1996. Science 274, 1332.Google Scholar
  19. 19.
    Oosterkamp T.H. et al., 1998. Phys. Rev. Lett. 80, 4951.Google Scholar
  20. 20.
    Blick R.H. et al., 1998. Phys. Rev. Lett. 80, 4032; ibid. 81, 689; Oosterkamp T.H. et al., 1998. Nature 395, 873. 411Google Scholar
  21. 21.
    Kikkawa J.M., Smorchkova I.P., Samarth N. and Awschalom D.D., 1997. Science 277, 1284; Kikkawa J.M. and Awschalom D.D., 1998. Phys. Rev. Lett. 80, 4313; Awschalom D.D. and Kikkawa J.M., 1999. Phys. Today 52, 33.Google Scholar
  22. 22.
    Gupta J.A., Awschalom D.D., Peng X. and Alivisatos A.P., 1999. Phys. Rev. B 59, R10421.Google Scholar
  23. 23.
    Barenco A. et al., 1995. Phys. Rev. A 52, 3457.Google Scholar
  24. 24.
    Burkard G., Loss D. and DiVincenzo D.P., 1999. Phys. Rev. B 59, 2070.Google Scholar
  25. 25.
    Imamoglu A., Awschalom D.D., Burkard G., DiVincenzo D.P., Loss D., Sherwin M. and Small A., 1999. Phys. Rev. Lett. 83, 4204.Google Scholar
  26. 26.
    Choi M.-S., Bruder C. and Loss D. to appear in Phys. Rev. B., cond-mat/0001011.Google Scholar
  27. 27.
    Luyken R.J. et al., preprint.Google Scholar
  28. 28.
    Austing D.G. et al., 1998. Physica B 249–251, 206.Google Scholar
  29. 29.
    Burkard G., Seelig G. and Loss D., 2000. Phys. Rev. B 62, 2581.Google Scholar
  30. 30.
    Ivchenko E.L., Kiselev A.A. and Willander M., 1997. Solid State Comm. 102, 375.Google Scholar
  31. 31.
    Kiselev A.A., Ivchenko E.L. and Rössler U., 1998. Phys. Rev. B 58, 16 353.Google Scholar
  32. 32.
    Burkard G., Loss D. and Sukhorukov E.V., 2000, Phys. Rev. B 61, R16303.Google Scholar
  33. 33.
    Loss D. and Sukhorukov E.V., 2000. Phys. Rev. Lett. 84, 1035; cond-mat/9907129.Google Scholar
  34. 34.
    Bennett C.H. and Brassard G., 1984. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, IEEE, NY, p. 175.Google Scholar
  35. 35.
    Einstein A., Podolsky B. and Rosen N. 1935. Phys. Rev. 47, 777.Google Scholar
  36. 36.
    Aspect A., Dalibard J. and Roger G., 1982. Phys. Rev. Lett. 49, 1804; Tittel W. et al., 1998. Phys. Rev. Lett. 81, 3563.Google Scholar
  37. 37.
    Boumeester D. et al., 1997. Nature 390, 575; Boschi D. et al., 1998. Phys. Rev. Lett. 80, 1121.Google Scholar
  38. 38.
    Loudon R., 1990. In: Eberly J.H. et al., eds. Coherence and Quantum Optics VI, Plenum, New York.Google Scholar
  39. 39.
    Hanbury Brown R. and Twiss R.Q., 1956. Nature (London) 177, 27.Google Scholar
  40. 40.
    Büttiker M., 1990. Phys. Rev. Lett. 65, 2901; Phys. Rev. B 46, 12 485 (1992).Google Scholar
  41. 41.
    Martin T. and Landauer R., 1992. Phys. Rev. B 45, 1742.Google Scholar
  42. 42.
    Liu R.C., Odom B., Yamamoto Y. and Tarucha S., 1998. Nature 391, 263; Henny M., Oberholzer S., Strunk C., Heinzel T., Ensslin K., Holland M. and Sch¨onenberger C., 1999. Science 284, 296; Oliver W.D. et al., 1999. Science 284, 299.Google Scholar
  43. 43.
    Prinz G.A., 1998. Science 282, 1660.Google Scholar
  44. 44.
    Khlus V.A., 1987. Zh. Eksp. Teor. Fiz. 93, 2179.Google Scholar
  45. 45.
    Loss D., Burkard G. and Sukhorukov E.V., 1999. In: Proceedings of the XXXIVth Recontres de Moriond ‘Quantum Physics at the Mesoscopic Scale’, Les Arcs, Savoie, France, January 23–30.Google Scholar
  46. 46.
    Sukhorukov E. and Loss D., 1999. In: Kulik I.O. ed. Quantum Mesoscopic Phenomena and Mesoscopic Devices in Microelectronics, NATO Advanced Study Institute Vol. C559, p. 243, Turkey, June 13–25.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Daniel Loss
    • 1
  • Guido Burkard
    • 2
  • David P. DiVincenzo
    • 3
  1. 1.Department of Physics and AstronomyUniversity of BaselBaselSwitzerland
  2. 2.Department of Physics and AstronomyUniversity of BaselBaselSwitzerland
  3. 3.IBM Research DivisionT.J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations