Advertisement

Flow, Turbulence and Combustion

, Volume 62, Issue 3, pp 183–200 | Cite as

Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor

  • F. Nicoud
  • F. Ducros
Article

Abstract

A new subgrid scale model is proposed for Large Eddy Simulations in complex geometries. This model which is based on the square of the velocity gradient tensor accounts for the effects of both the strain and the rotation rate of the smallest resolved turbulent fluctuations. Moreover it recovers the proper y3 near-wall scaling for the eddy viscosity without requiring dynamic procedure. It is also shown from a periodic turbulent pipe flow computation that the model can handle transition.

turbulence large eddy simulations wall-bounded flow unstructured mesh transition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lilly, D.K., A proposed modification of the germano subgrid-scale closure method. Phys. Fluids A 4(3) (1992) 633-635.Google Scholar
  2. 2.
    Wray, A.A. and Hunt, J.C.R., Algorithms for classification of turbulent structures. In: Proceedings of the IUTAM Symposium Topological Fluid Mechanics (1989) pp. 95-104.Google Scholar
  3. 3.
    Metais, O. and Lesieur, M., Spectral large-eddy simulation of isotropic and stably stratified turbulence. J. Fluid Mech. 239 (1992) 157-194.Google Scholar
  4. 4.
    Lesieur, M. and Métais, O., New trends in large-eddy simulations of turbulence. Ann. Rev. Fluid Mech. 28 (1996) 45-82.Google Scholar
  5. 5.
    Lund, T.S. and Novikov, E.A., Parameterization of subgrid-scale stress by the velocity gradient tensor. In: Center for Turbulence Research, Annual Research Briefs (1992) pp. 27-43.Google Scholar
  6. 6.
    Van Driest, E.R., On turbulent flow near a wall. J. Aero. Sci. 23 (1956) 1007-1011.Google Scholar
  7. 7.
    Moin, P. and Kim, J., Numerical investigation of turbulent channel flow. J. Fluid Mech. 118 (1982) 341-377.Google Scholar
  8. 8.
    Comte, P., Ducros, F., Silvestrini, J., David, E., Lamballais, E., Métais, O. and Lesieur, M., Simulation des grandes échelles d'écoulements transitionnels. In: AGARD Conference Proceedings 551 (1994) pp. 14/1-14/11.Google Scholar
  9. 9.
    Ducros, F., Comte, P. and Lesieur, M., Large-eddy simulation of transition to turbulence in a boundary layer spatially developing over a flat plate. J. Fluid Mech. 326 (1996) 1-36.Google Scholar
  10. 10.
    Germano, M., Piomelli, U., Moin, P. and Cabot, W.H. A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3(7) (1991) 1760-1765.Google Scholar
  11. 11.
    Meneveau, C., Lund, T. and Cabot, W., A Lagrangian dynamic subgrid-scale model of turbulence. J. Fluid Mech. 319 (1996) 353-385.Google Scholar
  12. 12.
    Ghosal, S., Lund, T., Moin, P. and Akselvoll, K., A dynamic localization model for large-eddy simulation of turbulent flows. J. Fluid Mech. 286 (1995) 229-255.Google Scholar
  13. 13.
    Jansen, K., Unstructured-grid large-eddy simulation of flow over an airfoil. In: Center for Turbulence Research, Annual Research Briefs (1994) pp. 161-173.Google Scholar
  14. 14.
    Nicoud, F., Ducros, F. and Schönfeld, T., Towards direct and large eddy simulations of compressible flows in complex geometries. In: Friedrich, R. and Bontoux, P. (eds), Notes on Numerical Fluid Mechanics, Vol. 64. Vieweg, Braunschweig (1998) pp. 157-171.Google Scholar
  15. 15.
    Ducros, F., Nicoud, F. and Schönfeld, T. Large-eddy simulation of compressible flows on hybrid meshes. In: Proceedings of the Eleventh Symposium on Turbulent Shear Flows, Grenoble, France, Vol. 3 (1997) pp. 28-1, 28-6.Google Scholar
  16. 16.
    Schönfeld, T. and Rudgyard, M., A cell-vertex approach to local mesh refinement for 3d Euler equations. AIAA Paper 94-0318 (1994).Google Scholar
  17. 17.
    Eggels, J.G.M., Unger, F., Weiss, M.H., Westerweel, J., Adrian, R.J., Friedrich, R. and Nieuwstadt, F.T.M., Fully developed turbulent pipe flow: A comparison between direct numerical simulation and experiment. J. Fluid Mech. 268 (1994) 175-209.Google Scholar
  18. 18.
    Lele K.S., Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103 (1992) 16-42.Google Scholar
  19. 19.
    Schönfeld, T. and Rudgyard, M., Steady and unsteady flows simulations using the hybrid flow solver AVBP. AIAA J. 37(9) (1999) to appear.Google Scholar
  20. 20.
    Nicoud, F.C., Poinsot, T.J. and Ha Minh, H., Direct numerical simulation of turbulent flow with massive uniform injection. In: Proceedings of the Tenth Symposium on Turbulent Shear Flows, The Pennsylvania State University, Vol. 3 (1995) pp. 29-13, 29-18.Google Scholar
  21. 21.
    Comte-Bellot, G. and Corrsin, S., Simple Eulerian time correlation of full-and narrow-band velocity signals in grid generated, ‘isotropic’ turbulence. J. Fluid Mech. 48 (1971) 273-337.Google Scholar
  22. 22.
    Moin, P., Squires, K., Cabot, W. and Lee, S., A dynamic subgrid-scale model for compressible turbulence and scalar transport. Phys. Fluids A 3(11) (1991) 2746-2757.Google Scholar
  23. 23.
    Dubois, T., Jauberteau, F. and Temam, R., Incremental unknowns, multilevel methods and the numerical simulation of turbulence. Comput. Methods Appl. Mech. Engrg. 159 (1998) 123-189.Google Scholar
  24. 24.
    Schlichting, H., Boundary Layer Theory. McGraw-Hill, New York (1979).Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • F. Nicoud
    • 1
  • F. Ducros
    • 1
  1. 1.CERFACS – Centre Européen de Recherche et de FormationToulouse CedexFrance

Personalised recommendations