Advertisement

Reliable Computing

, Volume 5, Issue 3, pp 279–288 | Cite as

A Few Results on Table-Based Methods

  • Jean-Michel Muller
Article

Abstract

Table-based methods are frequently used to implement functions. We examine some methods introduced in the literature, and we introduce a generalization of the bipartite table method, named the multipartite table method.

Keywords

Mathematical Modeling Computational Mathematic Industrial Mathematic Table Method Bipartite Table 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ercegovac, M. D., Lang, T., Muller, J. M., and Tisserand, A.: Reciprocation, Square Root, Inverse Square Root, and Some Elementary Functions Using Small Multipliers, Technical Report RR97-47, LIP, École Normale Supérieure de Lyon, November 1997, available at ftp://ftp.lip.ens-lyon.fr/pub/Rapports/RR/RR97/RR97-47.ps.Z.Google Scholar
  2. 2.
    Farmwald, P. M.: High Bandwidth Evaluation of Elementary Functions, in: Trivedi, K. S. and Atkins, D. E. (eds), Proceedings of the 5th IEEE Symposium on Computer Arithmetic, IEEE Computer Society Press, Los Alamitos, CA, 1981.Google Scholar
  3. 3.
    Hassler, H. and Takagi, N.: Function Evaluation by Table Look-Up and Addition, in: Knowles, S. and McAllister, W. (eds), Proceedings of the 12th IEEE Symposium on Computer Arithmetic, Bath, UK, July 1995. IEEE Computer Society Press, Los Alamitos, CA.Google Scholar
  4. 4.
    Das Sarma, D. and Matula, D. W.: Faithful Bipartite Rom Reciprocal Tables, in: Knowles, S. and McAllister, W. H. (eds), Proceedings of the 12th IEEE Symposium on Computer Arithmetic, Bath, UK, 1995, IEEE Computer Society Press, Los Alamitos, CA, pp. 17–28.Google Scholar
  5. 5.
    Schulte, M. and Stine, J.: Accurate Function Approximation by Symmetric Table Lookup and Addition, in: Proceedings of ASAP'97, IEEE Computer Society Press, Los Alamitos, CA, 1997.Google Scholar
  6. 6.
    Schulte, M. and Stine, J.: Symmetric Bipartite Tables for Accurate Function Approximation, in: Lang, T., Muller, J. M., and Takagi, N. (eds), Proceedings of the 13th IEEE Symposium on Computer Arithmetic, IEEE Computer Society Press, Los Alamitos, CA, 1997.Google Scholar
  7. 7.
    Schwarz, E.: High-Radix Algorithms for High-Order Arithmetic Operations, PhD thesis, Dept. of Electrical Engineering, Stanford University, 1992.Google Scholar
  8. 8.
    Tang, P. T. P.: Table Lookup Algorithms for Elementary Functions and Their Error Analysis, in: Kornerup, P. and Matula, D. W. (eds), Proceedings of the 10th IEEE Symposium on Computer Arithmetic, Grenoble, France, June 1991, IEEE Computer Society Press, Los Alamitos, CA, pp. 232–236.Google Scholar
  9. 9.
    Tang, P. T. P.: Table-Driven Implementation of the Expm1 Function in IEEE Floating-Point Arithmetic, ACM Transactions on Mathematical Software 18(2) (1992), pp. 211–222.Google Scholar
  10. 10.
    Tang, P. T. P.: Table-Driven Implementation of the Exponential Function in IEEE Floating-Point Arithmetic, ACM Transactions on Mathematical Software 15(2) (1989), pp. 144–157.Google Scholar
  11. 11.
    Tang, P. T. P.: Table-Driven Implementation of the Logarithm Function in IEEE Floating-Point Arithmetic, ACM Transactions on Mathematical Software 16(4) (1990), pp. 378–400.Google Scholar
  12. 12.
    Wong, W. F. and Goto, E.: Fast Evaluation of the Elementary Functions in Single Precision, IEEE Transactions on Computers 44(3) (1995), pp. 453–457.Google Scholar
  13. 13.
    Wong, W. F. and Goto, E.: Fast Hardware-Based Algorithms for Elementary Function Computations Using Rectangular Multipliers, IEEE Transactions on Computers 43(3) (1994), pp. 278–294.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Jean-Michel Muller
    • 1
  1. 1.CNRS, Laboratoire LIP, Project ARENAIRE, Ecole Normale Supérieure de LyonFrance

Personalised recommendations