Biomedical Microdevices

, Volume 1, Issue 1, pp 49–64

Chemical and Topographical Surface Modification for Control of Central Nervous System Cell Adhesion

  • H. G. Craighead
  • S. W. Turner
  • R. C. Davis
  • C. James
  • A. M. Perez
  • P. M. St. John
  • M. S. Isaacson
  • L. Kam
  • W. Shain
  • J. N. Turner
  • G. Banker
Article

Abstract

We describe methods of fine scale chemical and topographical patterning of silicon substrates and the selected attachment and growth of central nervous system cells in culture. We have used lithography and microcontact printing to pattern surfaces with self-assembled monolayers and proteins. Chemical patterns can be created that localize and guide the growth of cells on the surfaces. Self-assembled surface texturing with structures at the tens of nanometers scale and lithographic based methods at the micrometer scale have been used to produce a variety of surface topographical features. These experiments suggest that surface texture at the scale of tens of nanometers to micrometers can influence the attachment of these cells to a surface and can be used as a mechanism of isolating cells to a particular area on a silicon substrate.

surface texturing chemical patterning nanostructures self-assembled monolayers cell attachment lithography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Banker and K. Goslin, Culturing Nerve Cells (MIT Press, Cambridge, 1991).Google Scholar
  2. 2.
    J.E. Bottenstein, Methods for Serum-Free Culture of Neuronal and Lymphoid Cells (Alan R. Liss, New York, 1984).Google Scholar
  3. 3.
    D.A. Borkholder, J. Bao, N.I Maluf, E.R. Perl, and G.T.A. Kovacs, J. Neurosci. Meth. 77, 61 (1997).Google Scholar
  4. 4.
    P. Clark, P. Connolly, A.S.G. Curtis, J.A.T. Dow, and C.D.W. Wilkinson, Development 108, 635 (1990).Google Scholar
  5. 5.
    H.G. Coon, In Vitro. Proc. Nat. Acad. Sci. (USA) 55, 66–73 (1966).Google Scholar
  6. 6.
    F.T. Chen and H.G. Craighead, Optics Letters, 20, 121–123 (1995).Google Scholar
  7. 7.
    H.G. Craighead and R.E. Howard, Appl. Phys. Lett. 39, 532 (1981).Google Scholar
  8. 8.
    H.G. Craighead, R.E. Howard, J.E. Sweeney, and D. M. Tennant, J. Vac. Sci. Technol. 20, 316 (1982).Google Scholar
  9. 9.
    M.I. Davis-Cox, J.N. Turner, D. Szarowski, and W. Shain, Microscopy Res. Tech. 29, 319 (1994).Google Scholar
  10. 10.
    R.C. Davis, C.D. James, H.G. Craighead, M. Isaacson, and G. Banker, (in preparation).Google Scholar
  11. 11.
    T.A. Desai, W.H. Chu, J.K. Tu, G.M. Beattie, A. Hayek, and M. Ferrari, Biotechnology and Bioengineering 57, 118 (1998).Google Scholar
  12. 12.
    N. Dontha, W.B. Nowall, and W.G. Kuhr,. Analytical Chemistry 69, 2619 (1997).Google Scholar
  13. 13.
    M. Ferrari, W.H. Chu, T. Desai, D. Hansford, G. Mazzoni, and M. Zhang, MRS Proc. 414, 101 (1996).Google Scholar
  14. 14.
    C.D. James, R.C. Davis, L. Kam, H.G. Craighead, M. Isaacson, J.N. Turner, and W. Shain, Langmuir 14, 741 (1998).Google Scholar
  15. 15.
    C.E. Jordan, B.L. Frey, S. Kornguth, and R.M. Corn, Langmuir 10, 3642 (1994).Google Scholar
  16. 16.
    J.F. Hetke, J.L. Lund, K. Najafi, K.D. Wise, and D.J. Anderson, IEEE Trans. on Biomed. Eng. 41, 314 (1994).Google Scholar
  17. 17.
    D. Kleinfeld, K.H. Kahler, and P.E. Hockberger, J. Neurosci. 8, 4098 (1988).Google Scholar
  18. 18.
    A. Kumar and G.M. Whitesides, Appl. Phys. Lett. 63, 2002 (1993).Google Scholar
  19. 19.
    A. Kumar, H.A. Biebuyck, and G.M. Whitesides, Langmuir 10, 1498 (1994).Google Scholar
  20. 20.
    D.L. Martin and W. Shain, J. Biol Chem 254, 7076 (1979).Google Scholar
  21. 21.
    E.P. Pleuddmann, Silane Coupling Agents (Plenum, New York, 1982).Google Scholar
  22. 22.
    P.M. St. John, H.G. Craighead, Appl. Phys. Lett. 68, 1022 (1996).Google Scholar
  23. 23.
    P.M. St. John, L. Kam, H.G. Craighead, M. Issacson, W. Shain, D. Szarowski, S. Turner, and J.N. Turner, J. Neurosci. Meth. 75, 171 (1997).Google Scholar
  24. 24.
    P.M. St. John, R.C. Davis, N. Cady, J. Czajka, C.A. Batt, and H.G. Craighead, Analytical Chem. 70, 1108 (1998).Google Scholar
  25. 25.
    S. Turner, L. Kam, M. Isaacson, H.G. Craighead, D. Szarowski, J.N. Turner and W. Shain, Proc. SPIE 2978, 41–48 (1997).Google Scholar
  26. 26.
    Y. Xia, M. Mrksich, E. Kim, and G.M. Whitesides, J. Am. Chem. Soc. 117, 9576 (1995).Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • H. G. Craighead
    • 1
  • S. W. Turner
    • 1
  • R. C. Davis
    • 1
  • C. James
    • 1
  • A. M. Perez
    • 1
  • P. M. St. John
    • 1
  • M. S. Isaacson
    • 1
  • L. Kam
    • 2
  • W. Shain
    • 2
  • J. N. Turner
    • 2
  • G. Banker
    • 2
  1. 1.School of Applied and Engineering Physics, Clark HallCornell UniversityIthacaUSA
  2. 2.Wadsworth Center, N Y State Dept. of Health and Dept. of Biomedical ScienceSchool of Public HealthAlbanyUSA

Personalised recommendations