Flow, Turbulence and Combustion

, Volume 64, Issue 3, pp 183–196

OH Concentration Measurements by Resonant Holographic Interferometry and Comparison with Direct Numerical Simulations

  • Alexios-Paul Tzannis
  • Jerry C. Lee
  • Paul Beaud
  • Hans-Martin Frey
  • Thomas Greber
  • Bernhard Mischler
  • Peter P. Radi
  • Konstantinos Boulouchos


We apply a novel laser diagnostic technique — Resonant Holographic Interferometry (RHI) to measure the concentration of hydroxyl radical (∼2000 ppm) in a co-flow diffusion flame of diluted hydrogen and air stabilized on a Wolfhard-Parkerburner. This methodology is based upon the dispersion of light of frequency close to an electronic transition of a target molecule. The two-color setup utilized in RHI provides a two-dimensional distribution of the target species concentration and quantitative information can be obtained from the interferogram without requiring any calibration. To provide independent flame data for comparison, a two-dimensional numerical simulation was performed taking into account the effects of detailed chemical kinetics and transport phenomena. In spite of a number of simplifying assumptions made in the simulation, computational and experimental results are in good agreement with respect to the magnitude and width of the region where OH is found. We do observe a difference of approximately 1 mm in the flame position due to the simplifying assumptions made in the simulation. The comparison between the experimental and numerical results clearly demonstrated the potential of RHI in flame diagnostics.

concentration measurements resonant holographic interferometry H2/air co-flow diffusion flame direct numerical simulation spectral element method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tzannis, A.P., Resonant holographic interferometry, application to NH and OH concentration measurements in a 2D diffusion NHË-O2 flame. Ph.D. Dissertation No. 12457, Federal Institute of Technology, Zurich (1997).Google Scholar
  2. 2.
    Tzannis, A.P., Beaud, P., Frey, H.-M., Gerber, T., Mischler, B. and Radi, P.P., Phaseconjugate resonant holographic interferometry applied to NH concentration measurements in a two-dimensional diffusion flame. Appl. Opt. Ë6 (1997) 7978–798Ë.ADSCrossRefGoogle Scholar
  3. 3.
    Blendstrup, G., Bershader, D. and Langhoff, P.W., Resonance refractivity studies of sodium vapor for enhanced flow visualization. AIAA J. 16(10) (1978) 1106–1108.ADSGoogle Scholar
  4. 4.
    Measures, R.M., Spectral line interferometry: A proposed means of selectively measuring the change in the density of a specific atomic population. Appl. Opt. 9(Ë) (1970) 7Ë7–741.Google Scholar
  5. 5.
    Dreiden, G.V., Zaidel, A.N., Ostrovstaya, G.V., Ostrovski, Yu.I., Pobedonosteva, N.A., Tanin, L.V., Filippov, V.N. and Shedova, E.N., Plasma diagnostics by resonant interferometry and holography. Soviet J. Plasma Phys. 1(Ë) (1975) 256–267.Google Scholar
  6. 6.
    Brock, N.J., Brown, M.S., DeBarber P.A., Trolinger, J.D., Thurber, M.C., Wehe, S. and Hanson, R.K., Hydroxyl concentration measurements in shock-heated flows using resonant holographic interferometric spectroscopy (RHIS). In: AIAA 26th Plasmadynamics and Lasers Conference, San Diego CA, Paper AIAA 95–1951 (1995).Google Scholar
  7. 7.
    Sirota, J.M. and Christiansen, W.H., Flow diagnostics by resonant holographic interferometry. In: AIAA 21st Fluid Dynamics, Plasma Dynamics and Lasers Conference, Seattle, WA, Paper AIAA 90–1550 (1990).Google Scholar
  8. 8.
    Trolinger, J.D., Hess, C.F., Yip, B., Battles, B., Hanson, R.K., Hydroxyl density measurements with resonant holographic interferometry. In: AIAA Ë0th Aerospace Sciences Meeting & Exhibit, Reno NV, Paper AIAA 92–0582 (1992).Google Scholar
  9. 9.
    Eckbreth, A.C., In: Gupta, A.K. and Lilley, D.G. (eds), Laser Diagnostics for Combustion Temperature and Species. Abacus Press, Kent, U.K. (1988) p. Ë02.Google Scholar
  10. 10.
    Willians, S., Green, D.S., Sethuraman, S. and Zare, R.N., Detection of trace species in hostile environments using degenerate four-wave mixing: CH in an atmospheric-pressure flame. J. Amer. Chem. Soc. 114 (1992) 9122–91Ë0.CrossRefGoogle Scholar
  11. 11.
    Trees, D., Brown, T.M., Seshadri, K., Smooke, M.D., Balakrishnan, G., Pitz, R.W., Giovangigli, V. and Nandula, S.P., The structure of nonpremixed hydrogen-air flames. Comb. Sci. Techn. 104 (1995) 427–4Ë9.Google Scholar
  12. 12.
    Brown, T.M., Tanoff, M.A., Osborne, R.J., Pitz, R.W. and Smooke, M.D., Experimental and numerical investigation of laminar hydrogen-air counterflow diffusion flames. Comb. Sci. Techn. 129 (1997) 71–78.Google Scholar
  13. 13.
    Neger, T., Optical tomography of plasmas by spectral tomography. J. Phys. D., Appl. Phys. 28 (1995) 47–54.CrossRefADSGoogle Scholar
  14. 14.
    Craig, J.E., Azzazy, M. and Poon, C.C., Resonant holographic detection of hydroxyl radicals in reacting flows. AIAA J. 24(1) (1984) 74–81.ADSGoogle Scholar
  15. 15.
    Smyth, K.C., Tjossem, P.J., Hamins, A. and Miller, J.H., Concentration measurements of OH and equilibrium analysis in a laminar methane-air diffusion flame. Comb. Flame 79 (1990) Ë66-Ë80.CrossRefGoogle Scholar
  16. 16.
    Brock, N.J., Brown, M.S., DeBarber, P.A. and Segall, J., Practical considerations for resonant holographic interferometry in shock tube tunnel applications. In: 19th AIAA Advanced Measurement and Ground Testing Technology Conference, New Orleans, LA (1996).Google Scholar
  17. 17.
    Chu, B.T. and Kovasznay, L.S.G., Non-linear interactions in a viscous heat-conducting compressible gas. J. Fluid Mech. Ë, (1958) 494–514.MathSciNetCrossRefGoogle Scholar
  18. 18.
    Sivashinsky, G.J., Hydrodynamic theory of flame propagation in an enclosed volume. Acta Astronautica 6 (1979) 6Ë1–645.Google Scholar
  19. 19.
    Rehm, G.R. and Baum, H.R., The equations of motion for thermally driven bouyant flows. Journal of Research of the National Bureau of Standards (Ë) (1978) 297-Ë08.Google Scholar
  20. 20.
    Tomboulides, A.G., Lee, J.C.Y. and Orszag, S.A., Simulation of low Mach number reactive flows: Algorithm, analysis and applications. J. Sci. Comput. 12(2) (1997) 1Ë9–167.MathSciNetCrossRefGoogle Scholar
  21. 21.
    Lee, J.C.Y., Simulations of two-dimensional chemically reactive flows. Ph.D. Thesis, Princeton University (1996).Google Scholar
  22. 22.
    Hindmarsh, A.C., ODEPACK, A systematized collection of ODE solvers. In: Stepleman et al. (eds), Scientific Computing North-Holland, Amsterdam (1983) pp. 55–64.Google Scholar
  23. 23.
    Patera, A., A spectral element method for fluid dynamics: Laminar flow in a channel expansion. J. Comput. Phys. 54 (1984) 468–488.MATHCrossRefADSGoogle Scholar
  24. 24.
    Ronquist, E., Optimal spectral element methods for the unsteady three-dimensional incompressible Navier-Stokes equations. Ph.D. Thesis, MIT (1988).Google Scholar
  25. 25.
    Tomboulides, A.G., Direct and large-eddy simulations of wake flow: Flow past a sphere. Ph.D. Thesis, Princeton University (199Ë).Google Scholar
  26. 26.
    Coffee, T.P. and Heimerl, J.M., Sensitivity analysis for premixed, laminar, steady-state flames. Comb. Flame 50 (1983) Ë2Ë-Ë40.CrossRefGoogle Scholar
  27. 27.
    Lee, J.C.Y., Tomboulides, A., Orszag, S.A., Yetter, R. and Dryer, F.L., A transient twodimensional chemically reactive flow model: Fuel particle combustion in a nonquiescent environment. In: Burgess, A.R. and Dryer, F.L. (eds), 26th Symposium (Internat.) on Combustion, Napoli, Italy. The Combustion Institute, Pittsburgh, PA (1996) pp. Ë059-Ë065.Google Scholar
  28. 28.
    Yetter, R.A., Dryer, F.L. and Rabitz, H., A comprehensive reaction mechanism for carbon monoxide/hydrogen oxygen kinetics. Comb. Sci. Tech. 79 (1991) 79–97.Google Scholar
  29. 29.
    Kee, R., Rupley, J.A. and Miller, J.A., Chemkin-II: A Fortran chemical kinetics package for the analysis of gas phase chemical kinetics. Sandia National Laboratory Report SAND8Ë-8290, SAND87–8215B, UC-4 (1990).Google Scholar
  30. 30.
    Kee, R., Dixon-Lewis, G., Warnatz, J., Coltrin, M.E. and Miller, J.A., A Fortran computer package for the evaluation of gas-phase multicomponent transport properties. Sandia National Laboratory Report SAND86–8246 (1986).Google Scholar
  31. 31.
    Creath, K., Phase-measurement interferometry techniques. In:Wolf, E. (ed.), Progress in Optics XXVI. North-Holland, Amsterdam (1988) pp. Ë49-Ë9Ë.Google Scholar
  32. 32.
    Bombach, R., Hemmerling, B. and Kreutner, W., A transportable CARS system for measuring temperature fluctuations. In: Castelucci, E.M., Righini, R. and Foggi, P. (eds), Coherent Raman Spectroscopy, XI European CARS Workshop, Florence, Italy. World Scientific Publishing, Singapore (1992) pp. 4Ë-46.Google Scholar
  33. 33.
    Bradley, D. and Entwistle, A.G., Determination of the emissivity, for total radiation, of small diameter platinum-10% rhodium wires in the temperature range of 600–1450 C. British J. Appl. Phys. 12 (1961) 708–711.CrossRefADSGoogle Scholar
  34. 34.
    Frouzakis, C., Lee, J.C.Y., Tomboulides, A.G. and Boulouchos, K., Two-dimensional direct numerical simulation of a opposed-jet H2/air diffusion flame. In: Burgess, A.R. and Dryer, F.L. (eds), 27th Symposium (Internat.) on Combustion, Boulder, CO. The Combustion Institute, Pittsburgh, PA (1998) pp. 571–577.Google Scholar
  35. 35.
    Katta, V.R., Carter, C.D., Fiechtner, G.J., Roquemore, W.M., Gord, J.R. and Rolon, J.C., Interaction of a vortex with a flat flame formed between opposing jets of hydrogen and air. In: Burgess, A.R. and Dryer, F.L. (eds), 27th Symposium (Internat.) on Combustion, Boulder, CO. The Combustion Institute, Pittsburgh, PA (1998) pp. 587–594.Google Scholar
  36. 36.
    Thévenin, D., Rolon, J.C., Renard, P.H., Kendrick, D.W., Veynante, D. and Candel, S., Structure of a non-premixed flame interacting with counterrotating vortices. In: Burgess, A.R. and Dryer, F.L. (eds), 26th Symposium (Internat.) on Combustion, Napoli, Italy. The Combustion Institute, Pittsburgh, PA (1996) pp. 1079–1086.Google Scholar
  37. 37.
    Plessing, T., Terhoeven, P., Peters, N. and Mansour, M.S., An experimental and numerical study of a laminar triple flame. Comb. Flame 115(Ë) (1998) ËË5-Ë5Ë.Google Scholar
  38. 38.
    Diau, E.W., Smoth G.P., Jeffries J.B. and Crosley, D.R., HCO concentration in flames via quantitative laser-induced fluorescence. In: Burgess, A.R. and Dryer, F.L. (eds), 27th Symposium (Internat.) on Combustion, Boulder, CO. The Combustion Institute, Pittsburgh, PA (1998) pp. 45Ë-460.Google Scholar
  39. 39.
    Juchmann, W., Latzel, H., Shin, D.I., Peiter, F., Dreier, T., Volpp, H.R. and Wolfrum, J., Absolute radical concentration measurements and modeling of low pressure CH4/O2/NO flames. In: Burgess, A.R. and Dryer, F.L. (eds), 27th Symposium (Internat.) on Combustion, Boulder, CO. The Combustion Institute, Pittsburgh, PA (1998) pp. 469–476.Google Scholar
  40. 40.
    Arnold, A., Bombach, R., Käpeli, B. and Schlegel, A., Quantitative measurements of OH concentration fields by two-dimensional laser-induced fluorescence. Appl. Phys. B 64 (1997) 579–58Ë.CrossRefADSGoogle Scholar
  41. 41.
    Dändliker, R., Heterodyne holographic interferometry. In: Wolf, E. (ed.), Progress in Optics XVII. North-Holland, Amsterdam (1980) pp. 1–84.Google Scholar
  42. 42.
    Millerd, J.E., Brock, N.J., Brown, M.S. and DeBarber, P.A., Real-time holography using bacteriorhodopsin thin films. Opt. Lett. 20(6) (1995) 626–628.ADSCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Alexios-Paul Tzannis
    • 1
  • Jerry C. Lee
    • 2
  • Paul Beaud
    • 1
  • Hans-Martin Frey
    • 1
  • Thomas Greber
    • 1
  • Bernhard Mischler
    • 1
  • Peter P. Radi
    • 1
  • Konstantinos Boulouchos
    • 2
  1. 1.Department of General Energy ResearchPaul Scherrer InstituteSwitzerland
  2. 2.IC Engines and Combustion LaboratoryETH ZurichSwitzerland

Personalised recommendations