Environmental risk assessment of anthropogenic activity in the deep-sea

  • Ahmed Ahnert
  • Christian Borowski


The mining for mineral resources and the disposal of wastematerials are the major potential sources of environmental hazard for the deep-seasystem. Polymetallic nodules, manganese crusts, metalliferous sulphidic muds and massiveconsolidated sulphides might serve as exploitable sources of various metals, whilstphosporite deposits represent a further resource. The main types of waste targeted for deep-seadisposal are munitions, radioactive wastes, large offshore structures, sewage sludge anddredge spoils. Furthermore, it has recently been proposed to introduce hugequantities of carbon dioxide from industrial processes into the deep ocean in order tomitigate the greenhouse effect. A description of the different mineral resources and wastematerials is given, including information on the related technology and the status of thedumping and mining operations, respectively. The predicted effects of waste disposaland mining on the deep-seaenvironment are reviewed, possible impacts including removalof settling benthic substrate and mechanical stress exerted on soft bottomcommunities, plus impacts of sediment plumes, toxic materials and degradable organic matter.An overview of the major environmental studies in the deep sea is given. Twocategories of study can be discerned, research conducted after environmental impacts (e.g.,the monitoring of contamination by sewage sludge disposal off the New York Bight)and precautionary environmental studies on potential impacts threatening the deepsea environment in connection with its future human use (i.e., studies aiming toassess the possible effects of deep-sea mining). The development of large scale in-situexperiments was a new approach to the environmental risk assessment of nodule mining inthe deep sea. In the course of the DISCOL project in the south-east Pacific, the firstexperiment of this kind was implemented and monitored for three years. Another type oflarge-scale in-situexperimentation in the deep sea is represented by the BenthicImpact Experiments (BIEs) which have been conducted with similar experimental design by anumber of nations or multinational consortia. Since environmental impacts derivingfrom human penetration into the deep sea on an industrial scale are expected to besevere and long-lasting, a precautionary approach in the related environmental researchseems most appropriate. It is therefore proposed that environmental risk assessment in thedeep sea should rely on in-situ experiments which should start from a simulation ofsmall-scale impacts and proceed stepwise to the monitoring of a full-scale industrialoperation. At each stage impacts need to be evaluated thoroughly.

deep-sea communities benthos disturbance environmental risk assessment monitoring large-scale experiment sewage contamination mineral mining 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amsbaugh, J. K. & J. L. Van der Voort, 1982. The ocean mining industry: A benefit for every risk? Oceanus 25(3): 22–27.Google Scholar
  2. Angel, M. V. & A. L. Rice, 1996. The ecology of the deep ocean and its relevance to global waste management. Journal of Applied Ecology 33: 915–926.Google Scholar
  3. Anon., 1995. Report of the Study Group on the Biology and Assessment of Deep-Sea Fisheries Resources. International Council for the Exploration of the Sea (ICES), C.M.1995/Assess:4, 99 pp. (Mimeo).Google Scholar
  4. Anon., 1998a. 98/249/EC: Council decision of 7 October 1997 on the conclusion of the Convention for the protection of the marine environment of the north-east Atlantic. EU Official Journal L 104(03/04/199), p. 1.Google Scholar
  5. Anon., 1998b. Convention for the protection of the marine environment of the north-east Atlantic. EU Official Journal L 104(03/04/1998), pp. 2–21.Google Scholar
  6. Ballschmiter, K. H., O. Froescheis, W. M. Jarman & G. Caillet, 1997. Contamination of the deep-sea. Marine Pollution Bulletin 34(5): 288–289.Google Scholar
  7. BEON, 1990. Effects of Beam-Trawl Fishery on the Bottom Fauna in the North Sea III. BEON Report No. 16, 57 pp.Google Scholar
  8. Bergman, M. N. J. & M. Hup, 1992. Direct effects of beam trawling on macrofauna in a sandy sediment on the southern North Sea. ICES Journal of Marine Science 49: 5–11.Google Scholar
  9. Bett, B. J., 1999. Cruise Report No. 25. RRS Charles Darwin Cruise 112C, 19 May–24 June, 1998. Atlantic Margin Environmental Survey: Seabed of the deep-water areas (17th Round Trenches) to the north and west of Scotland. NERC/University of Southampton. Challenger Division for Seafloor Processes, Southampton Oceanography Centre, European Way, Southampton SO14 3ZH.Google Scholar
  10. Billett, D. S. M., R. S. Lampitt, A. L. Rice & R. F. C. Mantoura, 1983. Seasonal sedimentation of phytoplankton to the deep-sea benthos. Nature 302: 520–522.Google Scholar
  11. Binns, R. A. & D. Dekker, 1998. Der Mineralreichtum der Bismarcksee. Spektrum der Wissenschaft Spezial 1/1998, pp. 66–71.Google Scholar
  12. Bischoff, J. L. & D. Z. Piper (eds), 1979. Marine Geology and Oceanography of the Pacific Manganese Nodule Province. Plenum Press, New York, 842 pp.Google Scholar
  13. Biscoito, M., C. Cary, D. Dixon & C. E. Wilson, 1998. Proceedings of the First International Symposium on Deep-Sea Hydrothermal Vent Biology. Funchal, Madeira, Portugal, 20–24 October 1997. Cahiers de Biologie Marine 39(3–4): 219–392.Google Scholar
  14. Bluhm, H., 1994. Monitoring megabenthic communities in abyssal manganese nodule sites of the East Pacific Ocean in association with commercial deep-sea mining. Aquatic Conservation: Marine and Freshwater Ecosystems 4: 187–201.Google Scholar
  15. Bluhm, H., 1997. Megafauna as indicators for the recolonization of abyssal areas impacted by physical disturbances. Proceedings of the International Symposium on Environmental Studies for Deep-Sea Mining. MMAJ, Tokyo, November 20–21, 1997, pp. 211–221.Google Scholar
  16. Bluhm, H., G. Schriever & H. Thiel, 1995. Megabenthic recolonization in an experimentally disturbed abyssal manganese nodule area. Marine Georesources and Geotechnology 13: 393–416.Google Scholar
  17. Borowski, C. & H. Thiel, 1998. Deep-sea macrofaunal impacts of a large-scale physical disturbance experiment in the Southeast Pacific. Deep-Sea Research II 45: 55–81.Google Scholar
  18. Bothner, M. H., H. Takada, I. T. Knight, R. T. Hill, B. Butman, J. W. Farrington, R. R. Colwell & J. F. Grassle, 1994. Sewage contamination in sediments beneath a deep-ocean dump site off New York. Marine Environmental Research 38: 43–59.Google Scholar
  19. Bussau, C., G. Schriever & H. Thiel, 1995. Evaluation of abyssal metazoan meiofauna from a manganese nodule area of the eastern South Pacific. Vie et Milieu 45: 39–48.Google Scholar
  20. Clark, A., C. Johnson & P. Chin, 1984. Assessment of cobalt-rich manganese crusts in the Hawaiian, Johnston and Palyra Islands Exclusive Economic Zones. Natural Recourses Forum 8(2): 163–174.Google Scholar
  21. Clark, A. L. & C. J. Johnson, 1986. Cobalt-rich manganese crust potential of the U.S. Trust and affiliated territories. Proceedings of the Offshore Technology Conference 3 (OTC Paper 5233), pp. 111–118.Google Scholar
  22. Clark, A. L., J. A. Lum, C. Li, W. Icay, C. Morgan & Y. Igarashi, 1995. Economic and Development Potential of Manganese Nodules within the Cook Islands Exclusive Economical Zones (EEZ). East-West Centre, Univ. Hawaii, Honolulu, 34 pp.Google Scholar
  23. Clark, M. 1995. Experience with management of orange roughy (Hoplosthetus atlanticus) in New Zealand waters, and the effect of commercial fishing on stocks over the period 1980–1993. In: Hopper, A. G. (ed.), Deep-Water Fisheries of the North Atlantic Oceanic Slope. NATO ASI series: Series E, Applied Sciences; 296. Kluwer Academic Publishers, Dordrecht: 251–266.Google Scholar
  24. Cole, K. H., G. R. Stegen & D. Spencer, 1995. The capacity of the deep oceans to absorb carbon dioxide. In: Handa, N. & T. Ohsumi (eds), Direct Ocean Disposal of Carbon Dioxide. Terra Scientific Publishing Co., Tokyo: 143–152.Google Scholar
  25. Cruickshank, M. J., 1990. Mining technology for Gorda Ridge sulfides. In: McMurray, G. R. (ed.), Gorda Ridge – A Seafloor Spreading Centre in the United States Exclusive Economic Zone. Springer, N.Y.: 211–221.Google Scholar
  26. Degens, E. T. & D. A. Ross (eds), 1969. Hot Brines and Recent Heavy Metal Deposits in the Red Sea (A Geochemical and Geophysical Account). Springer, New York, 600 pp.Google Scholar
  27. Desbruyères, D., J. W. Eming, A. Dinet & A. Khripounoff, 1985. Réactions de l'écosystème benthique profond aux pertubations: nouveaux résultas expérimenteaux. In: Laubier, L. & C. Monniot (eds), Peuplements Profonds du Golfe de Gascogne. Campagnes BIOGAS. IFREMER, Brest: 121–142.Google Scholar
  28. Dyer, R. S., 1976. Environmental surveys of two deep-sea radioactive waste disposal sites using submersibles. Management of Radioactive Wastes from the Nuclear Fuel Cycle, Vol. II. International Atomic Energy Agency, Vienna, pp. 317–328.Google Scholar
  29. Farrington, J.W. & B.W. Tripp, 1977. Hydrocarbons in the western North Atlantic surface sediments. Geochimica et Cosmochimica Acta 41: 1627–1641.Google Scholar
  30. Foell, E. J., G. Schriever, H. Bluhm, C. Borowski, C. Bussau & H. Thiel, 1992. Disturbance and recolonization experiment in the abyssal South Pacific Ocean (DISCOL): An update. Proceedings of the Offshore Technology Conference (OTC Paper 6805), pp. 25–34.Google Scholar
  31. Fukushima, T., 1995. Overview “Japan Deep-Sea Impact Experiment = JET”. Proceedings of the ISOPE-Ocean Mining Symposium. Tsukuba, Japan, November 21–22, pp. 47–53.Google Scholar
  32. Gadbois, D. F., B. W. Dockum & D. S. Uljua, 1996. Bioaccumulation levels of chlorinated hydrocarbons in blue hake, rattail, halosaur and lobster. Journal of Marine Environmental Engineering 3(2–4): 189–203.Google Scholar
  33. Gage, J. D. & P. A. Tyler, 1991. Deep-Sea Biology. Cambridge University Press, Cambridge, 504 pp.Google Scholar
  34. GESAMP, 1990. The state of the marine environment. UNEP Regional Seas Report and Studies 115.Google Scholar
  35. Grassle, J. F., 1977. Slow recolonization of deep-sea sediment. Nature 265: 618–619.Google Scholar
  36. Grassle, J. F., 1991. Affects of sewage sludge on deep-sea communities. EOS Transactions, American Geophysical Union 72(51, Suppl.): 84.Google Scholar
  37. Grassle, J. F. & L. S. Morse-Porteous, 1987. Macrofaunal colonization of disturbed deep-sea environments and the structure of deep-sea benthic communities. Deep-Sea Research 34(12): 1911–1950.Google Scholar
  38. Halbach, P., G. Friedrich & U. von Stackelberg (eds), 1988. The Manganese Nodule Belt of the Pacific Ocean. Enke, Stuttgart, 254 pp.Google Scholar
  39. Halbach, P., C. D. Sattler, F. Teichmann & M. Washner, 1987. Characterization of Co-rich ferromanganese crust fields within the Johnston Island EEZ (Central Pacific). Proceedings OCEANIS' 87 3: 1015–1020.Google Scholar
  40. Hall, S. J., 1994. Physical disturbance and marine benthic communities: Life in unconsolidated sediments. Oceanography and Marine Biology Annual Review 32: 179–239.Google Scholar
  41. Hecker, B., 1991. Megafaunal assemblages at 2 600 m on the upper rise off New Jersey. EOS Transactions, American Geophysycal Union 72(51, Suppl.): 84.Google Scholar
  42. Heezen, B. C., M. Ewing & R. J. Menzies, 1955. The influence of submarine turbidity currents on abyssal productivity. Oikos 6: 170–182.Google Scholar
  43. Heezen, B. C., & C. D. Hollister, 1971. The Face of the Deep. Oxford University Press, New York, 659 pp.Google Scholar
  44. Hein, J. R., F. T. Manheim & W. C. Schwab, 1986. Cobalt-rich ferromanganese crusts from the Central Pacific. Proceedings of the Offshore Technology Conference 3 (OTC Paper 5234), pp. 119–126.Google Scholar
  45. Herrouin, G., J.-P. Lenoble, C. Charles, F. Mauviel, J. Bernard & B. Taine, 1989. A manganese nodule industrial venture would be profitable: Summary of a four year study in France. Proceedings of the Offshore Technology Conference, 1989, Houston. (OTC Paper 5997), pp. 321–331.Google Scholar
  46. Hill, R., I. Knight, M. Anikis, W. Straube & R. R. Colwell, 1991. Benthic distribution of sludge indicated by Clostridium perfringens spores at a sewage disposal site off the coast of New Jersey. EOS Transactions, American Geophysical Union 72(51, Suppl.): 83.Google Scholar
  47. Hollister, C. D. & I. N. McCave, 1984. Sedimentation under deepsea storms. Nature 309: 220–225.Google Scholar
  48. Hollister, C. D., A. R. M. Nowell & P. A. Jumars, 1983. The dynamic abyss. Scientific American 250: 32–43.Google Scholar
  49. Holloway, S., J. P. Heederik, L. G. H. van der Meer, I. Czernichowski-Lauriol, R. Harrison, E. Lindeberg, I. R. Summerfield, C. Rochelle, T. Schwarzkopf, O. Kaarstad & B. Berger, 1996. The underground disposal of carbon dioxide: Summary report. Non-Nuclear Energy R & D Programme JOULE II, CEC; British Geological Survey, Keyworth, UK, 24 pp.Google Scholar
  50. IMO, 1994. Disposal at sea of obsolete ammunition – prior reporting procedure. Notification by the Government of South Africa. London Convention 1972 LC.2/Circ.347 5 December 1994.Google Scholar
  51. Jennings, S. & M. J. Kaiser, 1998. The effects of fishing on marine ecosystems. Advances in Marine Biology 34: 201–352.Google Scholar
  52. Johnson, R. G., M. Kahn & C. Robbins, 1984. United states practices and politics for ocean disposal of radioactive wastes, 1946–1984. EPA 530/1-84-017. US Environmental Protection Agency, Washington D.C.Google Scholar
  53. Jumars, P., 1981. Limits in predicting and detecting benthic community responses to manganese nodule mining. Marine Mining 3(1/2): 213–229.Google Scholar
  54. Jumars, P. A. & J. E. Eckman, 1983. Spatial structure within deep sea benthic communities. In: G. T. Rowe (ed.), The Sea, Vol. 8: Deep-Sea Biology. John Wiley & Sons, New York: 399–451.Google Scholar
  55. Kaarstad, O., 1994. Norway pioneers large scale CO2 disposal in 1996. Greenhouse issues 15, August.Google Scholar
  56. Kajitani, Y., 1997. The Japanese environmental impact research for manganese nodules. Proceedings of the Second (1997) Ocean Mining Symposium, Seoul, Korea, November 24–26, pp. 131–138.Google Scholar
  57. Kaneko, S. T., K. Ogawa & T. Fukushima, 1995. Preliminary results of meiofauna and bacteria abundance in an environmental impact experiment. Proceedings of the ISOPE-Ocean Mining Symposium, Tsukuba, Japan, November 21–22, pp. 181–186.Google Scholar
  58. Karbe, L., 1987. Hot brines and deep sea environment. In: Edwards, A. J. & S.M. Head (eds), Red Sea (Key Environments). Pergamon Press, Oxford: 70–89.Google Scholar
  59. Karbe, L., M. O. Moammar, D. Nasr & C. Schnier, 1981a. Heavy metals in the Red Sea environment. In: Karbe, L., H. Thiel, H. Weikert & A.J.B. Mill (eds), Mining of Metalliferous Sediments from the Atlantis II Deep, Red Sea. Draft report to the Sudanese Red Sea Joint Commission, Univ. Hamburg: 195–225.Google Scholar
  60. Karbe, L. & D. Nasr, 1981. Chemical and toxicological compositions of the tailings material. Mining of Metalliferous Sediments from the Atlantis-II-Deep, Red Sea. Draft report to the Saudi-Sudanese Red Sea Joint Commission, Univ. Hamburg: 245–253.Google Scholar
  61. Karbe, L., H. Thiel, H. Weikert & A.J.B. Mill (eds), 1981b. Mining of Metalliferous Sediments from the Atlantis-II-Deep, Red Sea: Pre-Mining Environmental Conditions and Evaluation of the Risk to the Environment (Draft). Environmental impact study report to the Saudi-Sudanese Red Sea Joint Commission, Univ. Hamburg, 352 pp.Google Scholar
  62. Kobayashi, R., E. Hirata, K. Shiomi, H. Yamanaka & T. Kikuchi, 1979. Heavy metal contents in deep-sea fishes. Bulletin of the Japanese Society of Scientific Fisheries 45(4): 493–497.Google Scholar
  63. Koslow, J. A. & K. Gowlett-Holmes, 1998. The seamount fauna off southern Tasmania: Benthic communities, their conservation and impact of trawling. Final Report to Environment Australia and The Fisheries Research Development Corporation. Fisheries Research Development Corporation, Australia, 104 pp.Google Scholar
  64. Krämer, W., H. Buchert, U. Reuter, M. Biscoito, D. G. Maul, G. Le Grand & K. Ballschmiter, 1984. Global baseline pollution studies IX: C6–C14 organochlorine compounds in surface water and deep-sea fish from the Eastern North Atlantic. Chemosphere 13: 1255–1267.Google Scholar
  65. Kukert, H. & C. R. Smith, 1992. Disturbance, colonization and succession in a deep-sea sediment community: artificial mound experiments. Deep-Sea Research 39(7/8): 1349–1371.Google Scholar
  66. Lambshead, P. J. D. & A. J. Gooday, 1990. The impact of seasonally deposited phytodetritus on epifaunal and shallow infaunal benthic foraminiferal populations in the bathyal northeast Atlantic: The assemblage response. Deep-Sea Research 37: 1263–1283.Google Scholar
  67. Levin, L. A. & C. R. Smith, 1984. Response of background fauna to disturbance and enrichment in the deep sea: a sediment tray experiment. Deep-Sea Research 31(11): 1277–1285.Google Scholar
  68. Lindeboom, H. J. & S. J. de Groot, 1998. The effects of different types of fisheries on the North Sea and Irish Sea benthic ecosystems. NIOZ-Rapport 1998-1. Netherlands Institute for Sea Reserch, Den Burg, Texel, 404 pp.Google Scholar
  69. Marchetti, C., 1977. On geoengineering and the CO2 problem. Climate Change 1: 59–68.Google Scholar
  70. Maybury, C., 1996. Crevice formaminifera from abyssal South East Pacific manganese nodules. In: Moguilevsky, A. & R. Watley (eds), Microfossils and Oceanic Environments. University of Wales, Aberystwyth-Press: 282–293.Google Scholar
  71. Monteiro, L. R., V. Costa, R. W. Furness & R. S. Santos, 1996. Mercury concentrations in prey fish indicate enhanced bioaccumulation in mesopelagic environments. Marine Ecology Progress Series 141(1–3): 21–25.Google Scholar
  72. Musick, J. A., J. C. Desfosse, S. Wilk, D. McMillan & E. Grogan, 1996. Historical comparison of the structure of demersal fish communities near a deep-sea disposal site in the western North Atlantic. Journal of Marine Environmental Engineering 3(2–4): 149–171.Google Scholar
  73. NEA, 1980. Review of the continued suitability of the dumping site for radioactive waste in the North-East Atlantic. OECD Nuclear Energy Agency, Paris, 100 pp.Google Scholar
  74. NEA, 1985. Review of the continued suitability of the dumping site for radioactive waste in the North-east Atlantic. OECD Nuclear Energy Agency, 448 pp.Google Scholar
  75. NEA, 1990. Co-ordinated research and environmental surveillance programme related to sea disposal of radioactive waste – active report 1986–1990. OECD Nuclear Energy Agency, Paris, 30 pp.Google Scholar
  76. NERC, 1996. Scientific Group on Decommissioning Off-shore Structures: First report. Report by the National Environmental Research Council for the Department of Trade and Industry (UK), 76 pp.Google Scholar
  77. Oebius, H. U., 1998. Deep-Sea Mining and Its Environmental Consequences, Part 2. Deep-Ocean Mining Technology: A Review. TU Berlin, FB 6/ITU, Arbeitsgebiet Wasser-, Umwelt-, Meeresforschung/-Technik, Berlin, 78 pp.Google Scholar
  78. Omerod, B. & M. Angel (eds), 1996. Ocean Storage of Carbon Dioxide: Workshop 2 – Environmental Impact. IEA Greenhouse Gas R & D Programme, Cheltenham, 131 pp.Google Scholar
  79. Oslo Commission, 1989. Review of Sewage Sludge Disposal at Sea. Oslo Commission, London, 84 pp.Google Scholar
  80. OSPARCOM, 1993. North Sea Quality Status Report 1993. Oslo Commission, London.Google Scholar
  81. Rice, A. L., M. H. Thurston & B. J. Bett, 1994. The IOSDL DEEPSEAS programme: Introduction and photographic evidence for the presence and absence of seasonal input of phytodetritus at contrasting abyssal sites in the north-eastern Atlantic. Deep-Sea Research 41(9): 1305–1320.Google Scholar
  82. Rhoads, D. C. & D. K. Young, 1970. The influence of deposit feeding-organisms on bottom sediment stability and community trophic structure. Journal of Marine Research 28: 150–178.Google Scholar
  83. Robertson, A. (ed.), 1996. Offshore disposal: Results of the 106 mile dumpsite study. Part 3: Biological fates and effects. Journal of Marine Environmental Engineering 3: 99–326.Google Scholar
  84. Rogers, A. D., 1994. The biology of seamounts. Advances in Marine Biology 30: 305–350.Google Scholar
  85. Rogers, A. D., 1999. The biology of Lophelia pertusa (Linnaeus 1758) and other deep-water reef-forming corals and impacts from human activities. International Review of Hydrobiology 84(4): 315–406.Google Scholar
  86. Rowland, T. J., 1985. Non-energy marine mineral resources of the world oceans. MTS Journal 19(4): 6–17.Google Scholar
  87. Santorow, E. D. & T. J. Fikslin, 1987. Chemical and toxicological characteristics of sewage sludge ocean dumped in the New York Bight. Marine Pollution Bulletin 18: 394–399.Google Scholar
  88. Schoell, M. & M. Hartmann, 1978. Changing hydrothermal activity in the Atlantis II Deep geothermal system. Nature 274: 784–785.Google Scholar
  89. Schriever, G., H. Bluhm, A. Boetius, C. Borowski, C. Bussau & H. Thiel, 1992. DISCOL – Precautionary large scale environmental impact studies for future polymetallic nodule mining from the deep sea. In: Manna, R. (ed.), The Mining Outlook. Proceedings of the 15th World Mining Congress, 25–26 May, Madrid: 1311–1319.Google Scholar
  90. Schriever, G., Bussau, C., Thiel, H., 1991. Discol-precautionary environmental impact studies for future manganese nodule mining and first results on meiofauna abundance. Proceedings of the Advanced Marine Technology Conference 4: 47–57.Google Scholar
  91. Scott, S. D., 1992. Polymetallic sulfide riches from the deep: Fact or fallacy. In: Hsu, K. J. & J. Thiede (eds.), Use and Misuse of the Seafloor. John Wiley & Sons, Ltd.: 87–115.Google Scholar
  92. SEBA, 1995. Oslo and Paris Conventions for the prevention of marine pollution: Working group on sea-bed activities (SEBA). Summ. Rec. SEBA 95/8/1-E.Google Scholar
  93. Sennefelder, G., S. Chang, R. Greig, F. Thurberg & A. Calabrese, 1996. Metals in deepwater fishes and shrimps. Jorunal of Marine Environmental Engineering 3(2–4): 205–225.Google Scholar
  94. Sharma, R. & B. N. Nath, 1997. Benthic disturbance and monitoring experiment in the central Indian Ocean. Proceedings of the Second (1997) Ocean Mining Symposium Seoul, Korea, 24–26 November, pp. 146–153.Google Scholar
  95. Shepard, F. P., 1951. Mass movements in submarine canyon heads. Transactions American Geophysical Union 32: 405–418.Google Scholar
  96. Sibuet, M., D. Calmet & G. Auffret, 1985. Reconnaissance photographique de conteneurs en place dans la zone d'immersion des dechets faiblement radioactifs de l'Atlantique Nord-Est. Compte Rendue de l'Académie des Sciences, Paris (Série 3) 301(10): 497–502.Google Scholar
  97. Sibuet, M. & D. Coic, 1989. Photographic prospection of the NEA dumpsite in the northeast Atlantic: Quantitative distribution of epibenthic megafauna, interim oceanographic description of the North-east Atlantic site for the disposal of low-level radioactive waste. Vol. 3. OECD Nuclear Energy Agency, Paris, pp. 167–177.Google Scholar
  98. Smith, C. R., D. J. Hoover, S. E. Dawn, R. H. Pope, D. D. DeMaster, F. C. Dobbs & M. A. Altabet, 1996. Phytodetritus at the abyssal seafloor across 10 of latitude in the central equatorial Pacific. Deep-Sea Research II 43(4–6): 1309–1338.Google Scholar
  99. Snelgrove, P. V. R., J. F. Grassle & R. F. Petrecca, 1994. Macrofaunal response to artificial enrichments and depressions in a deep-sea habitat. Journal of Marine Research 52: 345–369.Google Scholar
  100. Stegeman, J. J., P. J. Kloepper-Sams & J. W. Farrington, 1986. Monooxygenase induction and chlorobiphenyls in the deep-sea fish Coryphaenoides armatus. Science 231: 1287–1289.Google Scholar
  101. Steimle, F. W., V. S. Zdanowicz & D. F. Gadbois, 1990. Metals and organic contaminants in Northwest Atlantic deep-sea tilefish tissues. Marine Pollution Bulletin 21: 530–535.Google Scholar
  102. Steinhauer, W. G., C. D. Hunt, C. S. Peven, R. E. Hillman, M. J. Moore, J. J. Stegeman & D. Redford, 1996. Contaminants and cytochrome P4501A induction in bottom fish collected near the 106-mile dumpsite. Journal of Marine Environmental Engineering 3(2–4): 173–187.Google Scholar
  103. Swinbanks, D. D. & Y. Shirayama, 1986a. High levels of natural radionuclides in a deep-sea infaunal xenophyophore. Nature 320: 345–357.Google Scholar
  104. Swinbanks, D. D. & Y. Shirayama, 1986b. A model of the effects of an infaunal xenophyophore on 210Pb distribution in deep-sea sediment. Umi La Mer 24: 69–74.Google Scholar
  105. Takada, H., J. W. Farrington, M. H. Bothner, C. G. Johnson & B. W. Tripp, 1994. Transport of sludge-derived organic pollutants to deep-sea sediments at Deep Water Dump Site 106. Environmental Science and Technology 28: 1062–1072.Google Scholar
  106. Takada, H., B. W. Tripp, C. H. Clifford, J. Farrington & M. Bothner, 1991. Detection and implication of sewage sludge organic chemicals in the sediments at deep water dumpsite 106. EOS Transactions, American Geophysical Union 72(51, Suppl.): 83.Google Scholar
  107. Thiel, H., 1991a. Environmental impact resulting from deep-sea mining and risk assessment. In: Wolfram, R. (ed.), Law of the Sea at the Crossroads: The Continuing Search for a Universally Accepted Régime. Duncker & Humblot, Berlin: 87–96.Google Scholar
  108. Thiel, H., 1991b. From MESEDA to DISCOL: A new approach to deep-sea mining risk assessment. Marine Mining 10: 369–386.Google Scholar
  109. Thiel, H., 1992. Deep-sea environmental disturbance and recovery potential. Internationale Revue der gesamten Hydrobiologie 77: 331–339.Google Scholar
  110. Thiel, H. (ed), submitted. Environmental Impact Studies for the Mining of Polymetallic Nodules from the Deep Sea. Deep-Sea Research II.Google Scholar
  111. Thiel, H., M. V. Angel, E. J. Foell, A. L. Rice & G. Schriever, 1998. Environmental risks from large-scale ecological research in the deep sea – a desk study. Report to the Commission of the European Communities. Directorate-General for Science, Research and Development under contract no. MAS2-CT94-0086, Bremerhaven, 210 pp.Google Scholar
  112. Thiel, H. & E. J. Foell & G. Schriever, 1991. Potential environmental effects of deep seabed mining. Berichte aus dem Zentrum für Meeres-und Klimaforschung der Universität Hamburg 26: 1–243.Google Scholar
  113. Thiel, H. & A. L. Rice, 1997. The environmental consequences of large-scale research in the Deep Ocean. Proceedings of the 7th International Offshore and Polar Engineering Conference, May 25–30, pp. 434–437.Google Scholar
  114. Thiel, H. & G. Schriever, 1990. Deep-sea mining, environmental impact and the DISCOL project. Ambio 19: 245–250.Google Scholar
  115. Thiel, H., G. Schriever, C. Bussau & C. Borowski, 1993. Manganese nodule crevice fauna. Deep-Sea Research I 40(2): 419–423.Google Scholar
  116. Thiel, H., H. Weikert & L. Karbe, 1986. Risk assessment for mining metalliferous muds in the Red Sea. Ambio 15(1): 34–41.Google Scholar
  117. Tkachenko, G. G., T. Radziejevska, V. Stoyanova, I. Modlitba & A. Parizek, 1996. Benthic Impact Experiment in the IOM pioneer area: Testing for effects of deep seabed disturbance. Proceedings of the International Seminar on Deep Sea-Bed Mining Technology, October 18–20, COMRA, Beijing, PR China, pp. C55–C68.Google Scholar
  118. Troyanovsky, F. M. & S. F. Lisovsky, 1995. Russian (USSR) fisheries research in deep waters (below 500 m.) in the North Atlantic. In: Hopper, A. G. (ed), Deep-Water Fisheries of the North Atlantic Oceanic Slope. NATO ASI series: Series E, Applied Sciences; 296. Kluwer Academic Publishers, Dordrecht: 357–365.Google Scholar
  119. Trueblood, D. D. & E. Ozturgut, 1997. The Benthic Impact Experiment: A study of ecological impacts on deep seabed mining on abyssal benthic communities. Proceedings of the seventh (1997) ISOPE Conference, May 25–30, Honolulu, Hawaii, USA, pp. 481–487.Google Scholar
  120. Trueblood, D. D., E. Ozturgut, M. Pilipchuk & I. F. Glumov, 1997. The ecological impacts of the U.S.–Russian Benthic Impact Experiment. Proceedings of the Second Ocean Mining Symposium Seoul, Korea, November 24–26, pp. 139–145.Google Scholar
  121. Tyler, P. A., 1988. Seasonality in the deep sea. Oceanography and Marine Biology Annual Review 26: 227–258.Google Scholar
  122. Tyler, P. A. & J. D. Gage, 1984. Seasonal reproduction of Echinus affinis (Echinodermata: Echinoidea) in the Rockall Trough, north-east Atlantic Ocean. Deep-Sea Research 31: 387–402.Google Scholar
  123. Valent, P. J. & D. K. Young, 1995. Abyssal seafloor waste isolation: Environmental report. Naval Research Laboratory, Stennis Space Center, NRL/MR/7401-95-7576, 479 pp.Google Scholar
  124. Van Dover, C. L., J. F. Grassle, B. Fry, R. H. Garritt, & V. R. Starczak, 1992. Stable isotope evidence for entry of sewage-derived organic material into a deep-sea food web. Nature 360: 153–156.Google Scholar
  125. Zaiger, K. K., 1994. Potential marine mining by in situ leaching and recovery of metals from cobalt-rich ferromanganese ocean crust. MTS 94 Conference Proceedings of the Marine Technology Society, Washington DC, pp. 226–232.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Ahmed Ahnert
    • 1
  • Christian Borowski
    • 2
  1. 1.Friedrich-Kücken-Straße 7BleckedeGermany
  2. 2.Zoologisches Institut und MuseumUniversität HamburgHamburgGermany

Personalised recommendations