Reliable Computing

, Volume 6, Issue 2, pp 123–137 | Cite as

Jacobi and Gauss-Seidel Iterations for Polytopic Systems: Convergence via Convex M-Matrices

  • Dušan M. Stipanović
  • Dragoslav D. Šiljak
Article

Abstract

A natural generalization of the Jacobi and Gauss-Seidel iterations for interval systems is to allow the matrices to reside in convex polytopes. In order to apply the standard convergence criteria involving M-matrices to iterations for polytopic systems, we derive conditions for a convex polytope of matrices to be a polytope of M-matrices in terms of its vertices. We show the conditions are used in the convergence analysis of iterations for block and nonlinear polytopic systems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bagnara, R.: A Unified Proof for the Convergence of Jacobi and Gauss-Seidel Methods, SIAM Review 37 (1995), pp. 93-97.Google Scholar
  2. 2.
    Barán, B., Kaszkurewicz, E. and Bhaya, A.: Parallel Asynchronous Team Algorithms: Convergence and Performance Analysis, IEEE Transactions on Parallel and Distributed Systems 7 (1996), pp. 677-688.Google Scholar
  3. 3.
    Berman, A. and Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York, 1979.Google Scholar
  4. 4.
    Bertsekas, D.P. and Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical Methods, Prentice-Hall, Englewood Cliffs, NJ, 1989.Google Scholar
  5. 5.
    Bhaya, A. and Kaszkurewicz, E.: Comments Regarding “On Stability of Interval Matrices,” IEEE Transactions on Automatic Control 41 (1996), pp. 762-766.Google Scholar
  6. 6.
    Boyd, S., Ghaoui, L. E., Feron, E., and Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia, PA, 1994.Google Scholar
  7. 7.
    Fan, K.: Inequalities for the Sum of Two M-Matrices, in: Shisha, O. (ed.), Inequalities, Academic Press, New York, 1967, pp. 105-117.Google Scholar
  8. 8.
    Fiedler, M. and Pták, V.: On Matrices with Non-Positive Off-Diagonal Elements and Positive Minors, Czechoslovakian Mathematical Journal 12 (1962), pp. 382-400.Google Scholar
  9. 9.
    Gale, D. and Nikaido, H.: The Jacobian Matrix and Global Univalence of Mappings, Mathematische Annalen 159 (1965), pp. 81-93.Google Scholar
  10. 10.
    Garloff, J.: Block Methods for the Solution of Linear Interval Equations, SIAM Journal of Matrix Analysis and Applications 11 (1990), pp. 89-106.Google Scholar
  11. 11.
    Hansen, E.: Global Optimization Using Interval Analysis, Marcel Dekker, New York, 1992.Google Scholar
  12. 12.
    Horisberger, H.P. and Belanger, P.R.: Regulators for Linear, Time Invariant Plants with Uncertain Parameters, IEEE Transactions on Automatic Control AC-21 (1976), pp. 705-708.Google Scholar
  13. 13.
    Horn, R. A. and Johnson, C. R.: Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991.Google Scholar
  14. 14.
    Moré, J. J.: Nonlinear Generalizations of Matrix Diagonal Dominance with Application to Gauss-Seidel Iterations, SIAM Journal on Numerical Analysis 9 (1972), pp. 357-378.Google Scholar
  15. 15.
    Moré, J. J. and Rheinboldt, W.: On P-and S-Functions and Related Classes of n-dimensional Nonlinear Mappings, Linear Algebra and Its Applications 6 (1973), pp. 45-68.Google Scholar
  16. 16.
    Nesterov, Yu. and Nemirovsky, A.: An Interior-Point Polynomial Methods in Convex Programming, Studies in Applied Mathematics, volume 13, SIAM, Philadelphia, PA, 1994.Google Scholar
  17. 17.
    Neumaier, A.: Interval Methods for Systems of Equations, Cambridge University Press, Cambridge, 1990.Google Scholar
  18. 18.
    Nikaido, H.: Convex Structures and Economic Theory, Academic Press, New York, 1968.Google Scholar
  19. 19.
    Ohta, Y. and Šiljak, D. D.: Overlapping Block Diagonal Dominance and Existence of Liapunov Functions, Journal of Mathematical Analysis and Applications 112 (1985), pp. 396-410.Google Scholar
  20. 20.
    Rheinboldt, W. C.: On M-functions and Their Applications to Nonlinear Gauss-Seidel Iterations and Network Flows, Journal of Mathematical Analysis and Applications 32 (1970), pp. 275-307.Google Scholar
  21. 21.
    Sezer, M. E. and Šiljak, D. D.: On Stability of Interval Matrices, IEEE Transactions on Automatic Control 39 (1994), pp. 368-371.Google Scholar
  22. 22.
    Šiljak, D. D. and Zečević, A. I.: Overlapping Block-Iterative Methods for Solving Algebraic Equations, Journal of Difference Equations and Applications 1 (1995), pp. 125-136.Google Scholar
  23. 23.
    Stipanović, D. M. and Šiljak, D. D.: Convex M-Matrices and Polytopic Dynamic Systems, in: Proceedings of the 36th Conference on Decision and Control, San Diego, CA, 1997, pp. 4366-4368.Google Scholar
  24. 24.
    Varga, R. S.: Matrix Iterative Analysis, Prentice Hall, Englewood Cliffs, NJ, 1962.Google Scholar
  25. 25.
    Zečević, A. I. and Šiljak, D. D.: A Block-Parallel Newton Method via Overlapping Epsilon Decomposition, SIAM Journal of Matrix Analysis and Applications 15 (1994), pp. 824-844.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Dušan M. Stipanović
    • 1
  • Dragoslav D. Šiljak
    • 2
  1. 1.Department of Electrical EngineeringSanta Clara UniversitySanta ClaraUSA
  2. 2.B & M Swig Professor, School of EngineeringSanta Clara UniversitySanta ClaraUSA

Personalised recommendations