Semiparametric Estimation of the Intensity of Long Memory in Conditional Heteroskedasticity

  • Liudas Giraitis
  • Piotr Kokoszka
  • Remigijus Leipus
  • Gilles Teyssière
Article

Abstract

The paper is concerned with the estimation of the long memory parameter in a conditionally heteroskedastic model proposed by Giraitis et al. (1999b). We consider estimation methods based on the partial sums of the squared observations, which are similar in spirit to the classical R / S analysis, as well as spectral domain approximate maximum likelihood estimators. We review relevant theoretical results and present an empirical simulation study.

long memory ARCH models semiparametric estimation modified R / S KPSS and V / S statistics periodogram 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baillie, R. T., Bollerslev, T. and Mikkelsen, H. O.: Fractionally integrated generalized autoregressive conditional heteroskedasticity, J. Economet. 74 (1996), 3–30.Google Scholar
  2. Beran, J.: Statistics for Long-Memory Processes, Chapman & Hall, New York, 1994.Google Scholar
  3. Campbell, J. Y., Lo, A.W. and MacKinlay, A. C.: The Econometrics of Financial Markets, Princeton University Press, Princeton, 1997.Google Scholar
  4. Delgado, M. A. and Robinson, P. M.: Optimal spectral bandwidth for long memory, Statistica Sinica 6 (1996), 97–112.Google Scholar
  5. Ding, Z. and Granger, C. W. J.: Modeling volatility persistence of speculative returns: a new approach, J. Economet. 73 (1996), 185–215.Google Scholar
  6. Giraitis, L., Kokoszka, P. and Leipus, R.: Stationary ARCH models: dependence structure and Central Limit Theorem, Econometric Theory 16 (2000), 3–22.Google Scholar
  7. Giraitis, L., Kokoszka, P. and Leipus, R.: Rescaled variance and related tests for long-memory in volatility and levels, Preprint, 1999a.Google Scholar
  8. Giraitis, L., Robinson, P. and Surgailis, D.: A model for long memory conditional heteroskedasticity, Ann. Appl. Probab. 1999b, in press.Google Scholar
  9. Giraitis, L., Robinson, P. and Surgailis, D.: Variance-type estimation of long memory, Stochastic Processes and Their Applications 80, 1–24.Google Scholar
  10. Hurst, H.: Long term storage capacity of reservoirs, Transac. Amer. Soc. Civil Engrs 116 (1951), 770–799.Google Scholar
  11. Kokoszka, P. and Leipus, R.: Change-point estimation in ARCH models, Bernoulli 6 (2000), in press.Google Scholar
  12. Künsch, H.: Statistical aspects of self-similar processes, in Yu. A. Prohorov and V V. Sazonov (eds), Proceedings of the 1st World Congress of the Bernoulli Society, vol. 1, VNU Science Press, Utrecht, 1987, pp. 67–74.Google Scholar
  13. Kwiatkowski, D., Phillips, P. C. B., Schmidt, P. and Shin, Y.: Testing the null hypothesis of stationarity against the alternative of a unit root: how sure are we that economic time series have a unit root? J. Economet. 54 (1992), 159–178.Google Scholar
  14. Lee, D. and Schmidt, P.: On the power of the KPSS test of stationarity against fractionally-integrated alternatives, J. Economet. 73 (1996), 285–302.Google Scholar
  15. Lobato, I and Savin N. E.: Real and spurious long-memory properties of stock market data, J. Business and Eco. Stat. 16 (1998), 261–283.Google Scholar
  16. Mandelbrot, B. B.: Statistical methodology for non-periodic cycles: from the covariance to R/S analysis,Ann. Eco. Social Measurement 1 (1972), 259–290.Google Scholar
  17. Mandelbrot, B. B.: Limit theorems of the self-normalized range for weakly and strongly dependent processes, Z. Wahrschein. verw. Gebiete 31 (1975), 271–285.Google Scholar
  18. Mandelbrot, B. B. and Taqqu, M. S.: Robust R/S analysis of long run serial correlation, in 42nd Session of the International Statistical Institute, Manila, Book 2, 1979, pp. 69–90.Google Scholar
  19. Mandelbrot, B. B. and Wallis, J. M.: Robustness of the rescaled range R/S in the measurement of noncyclic long run statistical dependence, Water Resour. Res. 5 (1969), 967–988.Google Scholar
  20. Robinson, P. M.: Testing for strong serial correlation and dynamic conditional heteroskedasticity in multiple regression, J. Economet. 47 (1991), 67–84.Google Scholar
  21. Robinson, P. M.: Gaussian semiparametric estimation of long range dependence, Ann. Stat. 23 (1995), 1630–1661.Google Scholar
  22. Robinson, P. M. and Henry, M.: Bandwidth choice in Gaussian semiparametric estimation of longrange dependence, in P. M. Robinson and M. Rosenblatt (eds), Athens Conference on Applied Probability and Time Series Analysis, vol. II: Time Series Analysis. In memory of E. J. Hannan, Springer-Verlag, New York, 1996, pp. 220–232.Google Scholar
  23. Stout, W. F.: Almost Sure Convergence, Academic Press, New York, 1974.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Liudas Giraitis
    • 1
  • Piotr Kokoszka
    • 2
  • Remigijus Leipus
    • 3
  • Gilles Teyssière
    • 4
  1. 1.Department of EconomicsLondon School of EconomicsLondonUnited Kingdom
  2. 2.Department of Mathematical SciencesUniversity of LiverpoolLiverpoolUnited Kingdom
  3. 3.Department of Mathematics and InformaticsVilnius UniversityVilniusLithuania
  4. 4.European Commission, and GREQAM Joint Research Centre, ISISIspra (VA)Italy

Personalised recommendations