Reliable Computing

, Volume 6, Issue 3, pp 303–320 | Cite as

Application of Bernstein Expansion to the Solution of Control Problems

  • Jürgen Garloff


We survey some recent applications of Bernstein expansion to robust stability, viz. checking robust Hurwitz and Schur stability of polynomials with polynomial parameter dependency by testing determinantal criteria and by inspection of the value set. Then we show how Bernstein expansion can be used to solve systems of strict polynomial inequalities.


Mathematical Modeling Control Problem Computational Mathematic Industrial Mathematic Parameter Dependency 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdallah, C., Dorato, P., Liska, R., Steinberg, S., and Yang, W.: Applications of Quantifier Elimination Theory to Control Theory, Technical Report EECE95-007, University of New Mexico, Department of Electrical and Computer Engineering, Albuquerque, 1995, cf. Proc. of the 4th IEEE Mediteranean Symposium on Control and Automation, Maleme, Crete, Greece, 1996, pp. 340-345.Google Scholar
  2. 2.
    Ackermann, J.: Robust Control, Systems with Uncertain Physical Parameters, Springer, London, 1993.Google Scholar
  3. 3.
    Barmish, B. R.: New Tools for Robustness of Linear Systems, Macmillan, New York, 1994.Google Scholar
  4. 4.
    Barnett, S.: Polynomials and Linear Control Systems, Marcel Dekker, New York, 1983, p. 155.Google Scholar
  5. 5.
    Baumann, E.: Optimal Centred Forms, BIT 28 (1988), pp. 80-87.Google Scholar
  6. 6.
    Bose, N. K. and Delansky, J. F.: Tests for Robust Schur Interval Polynomials, in: Glasford, G. and Jabbour, K. (eds), 30th Midwest Symposium on Circuits and Systems, Elsevier Sci. Publ., 1988, pp. 1357-1361.Google Scholar
  7. 7.
    Didrit, O., Jaulin, L., and Walter, E.: Guaranteed Analysis and Optimization of Parametric Systems with Application to Their Stability Degree, European J. Contr. 3 (1997), pp. 68-80.Google Scholar
  8. 8.
    Farouki, R. T. and Rajan, V. T.: Algorithms for Polynomials in Bernstein Form, Computer Aided Geometric Design 5 (1988), pp. 1-26.Google Scholar
  9. 9.
    Fiorio, G., Malan, S., Milanese, M., and Taragna, M.: Robust Performance Design of Fixed Structure Controllers for Systems with Uncertain Parameters, in: Proc. 32nd Conference on Decision and Control, San Antonio, Texas, 1993, pp. 3029-3031.Google Scholar
  10. 10.
    Fischer, H. C.: Range Computations and Applications, in: Ullrich, C. (ed.), Contributions to Computer Arithmetic and Self-Validating Numerical Methods, J. C. Baltzer, Amsterdam, 1990, pp. 197-211.Google Scholar
  11. 11.
    Frazer, R. A. and Duncan, W. J.: On the Criteria for the Stability of Small Motions, Proc. Royal Soc. A 124 (1929), pp. 642-654.Google Scholar
  12. 12.
    Garloff, J.: Convergent Bounds for the Range of Multivariate Polynomials, in: Nickel, K. (ed.), Interval Mathematics 1985 (Lecture Notes in Computer Science 212), Springer, Berlin, 1986, pp. 37-56.Google Scholar
  13. 13.
    Garloff, J.: The Bernstein Algorithm, Interval Computations 2 (1993), pp. 154-168.Google Scholar
  14. 14.
    Garloff, J. and Graf, B.: Robust Schur Stability of Polynomials with Polynomial Parameter Dependency, Multidimensional Systems and Signal Processing 10 (1999), pp. 189-199.Google Scholar
  15. 15.
    Garloff, J. and Graf, B.: Solving Strict Polynomial Inequalities by Bernstein Expansion, in: Munro, N. (ed.), Symbolic Methods in Control System Analysis and Design, IEE, London, 1999, pp. 339-352.Google Scholar
  16. 16.
    Garloff, J., Graf, B., and Zettler, M.: Speeding Up an Algorithm for Checking Robust Stability of Polynomials, in: Bányász, Cs. (ed.), Robust Control Design, Elsevier Sci., Oxford, 1998, pp. 183-188.Google Scholar
  17. 17.
    Graf, B.: Computation of Stability Regions, Techn. Rep. no. 9801, Fachhochschule Konstanz, Fachbereich Informatik, 1998.Google Scholar
  18. 18.
    Guglielmi, N.: Delay Dependent Stability Regions for Θ-Methods for Delay Differential Equations, IMA Journal of Numerical Analysis 18 (1998), pp. 399-418.Google Scholar
  19. 19.
    Hong, H. and Stahl, V.: Bernstein Form Is Inclusion Monotone, Computing 55 (1995), pp. 43-53.Google Scholar
  20. 20.
    Hungerbühler, R. and Garloff, J.: Bounds for the Range of a Bivariate Polynomial over a Triangle, Reliable Computing 4(1) (1998), pp. 3-13.Google Scholar
  21. 21.
    Jaulin, L. and Walter, E.: Set Inversion via Interval Analysis for Nonlinear Bounded-Error Estimation, Automatica 29 (1993), pp. 1053-1064.Google Scholar
  22. 22.
    Jirstrand, M. Constructive Methods for Inequality Constraints in Control, Linköping Studies in Science and Technology, Dissertations, no. 527, Linköping University, Department of Electrical Engineering, Linköping, Sweden, 1998.Google Scholar
  23. 23.
    Jury, E. J.: Inners and Stability of Dynamic Systems, Wiley, New York, 1974; Krieger, FLA, 2nd edn., 1982.Google Scholar
  24. 24.
    Jury, E. I. and Pavlidis, T.: Stability and Aperiodicity Constraints for System Design, IEEE Trans. Circuit Theory 10 (1963), pp. 137-141.Google Scholar
  25. 25.
    Malan, S., Milanese, M., and Taragna, M.: Robust Analysis and Design of Control Systems Using Interval Arithmetic, Automatica 33 (1997), pp. 1363-1372.Google Scholar
  26. 26.
    Malan, S., Milanese, M., Taragna, M., and Garloff, J.: B 3 Algorithm for Robust Performances Analysis in Presence of Mixed Parametric and Dynamic Perturbations, in: Proc. 31st Conf. Decision Contr., Tucson, AZ, 1992, pp. 128-133.Google Scholar
  27. 27.
    Mulmuley, K.: Computational Geometry, An Introduction through Randomized Algorithms, Prentice Hall, Englewood-Cliffs, 1994.Google Scholar
  28. 28.
    Neumaier, A.: Interval Methods for Systems of Equations, Cambridge University Press, Cambridge, 1990.Google Scholar
  29. 29.
    Ohta, Y.: Nonconvex Polygon Interval Arithmetic as a Tool for the Analysis and Design of Robust Control Systems, this issue, pp. 247-279.Google Scholar
  30. 30.
    Ratschek, H. and Rokne, J.: Computer Methods for the Range of Functions, Ellis Horwood, Chichester, 1984.Google Scholar
  31. 31.
    Rivlin, T. J.: Bounds on a Polynomial, J. Res. Nat. Bur. Standards Section B 74B (1970), pp. 47-54.Google Scholar
  32. 32.
    Roguet, C. and Garloff, J.: Computational Experiences with the Bernstein Algorithm, Techn. Rep. no. 9403, Fachhochschule Konstanz, Fachbereich Informatik, 1994.Google Scholar
  33. 33.
    Rokne, J.: Bounds for an Interval Polynomial, Computing 18 (1977), pp. 225-240.Google Scholar
  34. 34.
    Rokne, J.: A Note on the Bernstein Algorithm for Bounds for Interval Polynomials, Computing 21 (1979), pp. 159-170.Google Scholar
  35. 35.
    Rokne, J.: The Range of Values of a Complex Polynomial over a Complex Interval, Computing 22 (1979), pp. 153-169.Google Scholar
  36. 36.
    Rokne, J.: Optimal Computation of the Bernstein Algorithm for the Bound of an Interval Polynomial, Computing 28 (1982), pp. 239-246.Google Scholar
  37. 37.
    Saydy, L., Tits, A. L., and Abed, E. H.: Guardian Maps and the Generalized Stability of Parameterized Families of Matrices and Polynomials, Math. Contr., Signals, and Syst. 3 (1990), pp. 345-371.Google Scholar
  38. 38.
    Vehi, J., Rodellar, J., Sainz, M., and Armengol, J.: Analysis of the Robustness of Predictive Controllers via Modal Intervals, this issue, pp 281-301.Google Scholar
  39. 39.
    Walter, E. and Jaulin, L.: Guaranteed Characterization of Stability Domains via Set Inversion, IEEE Trans. Automat. Contr. 39 (1994), pp. 886-889.Google Scholar
  40. 40.
    Zettler, M. and Garloff, J.: Robustness Analysis of Polynomials with Polynomial Parameter Dependency Using Bernstein Expansion, IEEE Trans. Automat. Contr. 43 (1998), pp. 425-431.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Jürgen Garloff
    • 1
  1. 1.Fachhochschule KonstanzUniversity of Applied Sciences, FB InformatikKonstanzGermany

Personalised recommendations