Algebras and Representation

, Volume 1, Issue 1, pp 3–26 | Cite as

Submodule Structure of Generalized Verma Modules Induced from Generic Gelfand-Zetlin Modules

  • V. S. Mazorchuk
  • S. A. Ovsienko

Abstract

For complex Lie algebra sl(n, C) we study the submodule structure of generalized Verma modules induced from generic Gelfand-Zetlin modules over some subalgebra of type sl(k, C). We obtain necessary and sufficient conditions for the existence of a submodule generalizing the Bernstein-Gelfand-Gelfand theorem for Verma modules.

Lie algebras induced representations generalized Verma modules Gelfand-Zetlin modules 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bernstein, I. N., Gelfand, I. M. and Gelfand, S. I.: The structure of representation generated by vector of highest weight, Funct. Anal. Appl. 5 (1971), 1–9.Google Scholar
  2. 2.
    Bjorner, A. and Wachs, M.: Generalized quotients in Coxeter group, Trans. Amer. Math. Soc. 308 (1988), 1–37.Google Scholar
  3. 3.
    Coleman, A. J. and Futorny, V. M.: Stratified L-modules, J. Algebra 163 (1994), 219–234.Google Scholar
  4. 4.
    Dixmier J.: Enveloping Algebras, North-Holland, Amsterdam, 1977.Google Scholar
  5. 5.
    Drozd, Yu. A., Futorny, V. M. and Ovsienko, S. A.: Harish-Chandra subalgebras and Gelfand-Zetlin modules, in: V. Dlab and L. L. Scott (eds), Finite Dimensional Algebras and Related Topics, Kluwer Academic Publishers, Dordrecht, Boston, London, 1994.Google Scholar
  6. 6.
    Drozd, Yu. A., Ovsienko, S. A. and Futorny, V. M.: S-homomorphism of Harish-Chandra and G-modules generated by semiprimitive elements, Ukrainian Math. J. 42 (1990), 1032–1037.Google Scholar
  7. 7.
    Futorny, V. M.: A generalization of Verma modules and irreducible representations of the Lie algebra sl(3,ℂ), Ukrainian Math. J. 38 (1986), 422–427.Google Scholar
  8. 8.
    Futorny, V. M. and Mazorchuk, V. S.: Structure of α-stratified modules for finite-dimensional Lie algebras I, J. Algebra 183 (1996), 456–482.Google Scholar
  9. 9.
    Joseph, A.: The primitive spectrum of an enveloping algebra, in: Orbites unipotentes at représentations, Astérisque 173–174 (1989), 13–54.Google Scholar
  10. 10.
    Kostant, B.: On the tensor product of a finite and an infinite dimensional representation, J. Funct. Anal. 20 (1975), 257–285.Google Scholar
  11. 11.
    Mazorchuk, V. S.: The structure of an α-stratified generalized Verma module over Lie Algebra sl(n,ℂ), Manuscripta Math. 88 (1995) 59–72.Google Scholar
  12. 12.
    Moody, R. V. and Pianzola, A.: Lie Algebras with Triangular Decomposition, Wiley, New York, 1995.Google Scholar
  13. 13.
    Zelobenko, D. P.: Compact Lie Groups and their Representations, Nauka, Moscow, 1974.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • V. S. Mazorchuk
    • 1
  • S. A. Ovsienko
    • 1
  1. 1.Deparment of Mechanics and MathematicsKiev Taras Shevchrnko UniversityKievUkraine

Personalised recommendations