Biomedical Microdevices

, Volume 2, Issue 3, pp 179–184 | Cite as

Constructing Organic/Inorganic NEMS Devices Powered by Biomolecular Motors

  • George D. Bachand
  • Carlo D. Montemagno
Article

Abstract

The recognition of many enzymes as nanoscale molecular motors has opened the door for the potential creation of hybrid organic/inorganic nano-electro-mechanical (NEMS) devices. The long-term objective of this research is the integration of F1-ATPase with NEMS to produce useful nanoscale devices. A thermostable F1-ATPase coding sequence has been isolated, cloned, and engineered for high-level protein expression. Precise positioning, orientation, and spacing of individual F1-ATPase molecules were achieved on patterned nickel arrays produced using electron beam lithography. An efficient and accurate assay was developed to evaluate the performance of individual F1-ATPase motors, and confirmed a three-step mechanism of γ subunit rotation during ATP hydrolysis. Further assessment of the biophysical and bioengineering properties of FF1-ATPase currently are being conducted, as well as the construction of a hybrid NEMS device powered by FF1-ATPase. The evolution of this technology will permit the creation of novel classes of nanoscale, hybrid devices.

Biological motors F1-ATPase biomotors nanofabrication electron beam lithography differential interferometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Abramowitz, Journal of Biomedical Microdevices 1, 107 (1999).Google Scholar
  2. 2.
    M.A. Bianchet, J. Hullihen, P.L. Pedersen, and L.M. Amzel, Proceedings of the National Academy of Science USA 95, 11065 (1998).Google Scholar
  3. 3.
    D.W. Carr and H.G. Craighead, Journal of Vacuum Science and Technology B 15, 2760 (1997).Google Scholar
  4. 4.
    H.G. Craighead and P.M. Mankiewich, Journal of Applied Physics 53, 7186 (1982).Google Scholar
  5. 5.
    K. Kinosita Jr, R. Yashida, H. Noji, S. Ishiwata, and M. Yoshida, Cell 93, 21 (1998).Google Scholar
  6. 6.
    K. Kitamura, M. Tokunaga, A.H. Iwane, and T. Yanagida, Nature 397, 129 (1999).Google Scholar
  7. 7.
    M.J. Lercel, H.G. Craighead, A.N. Parikh, K. Seshadri, and D.L. Allara, Applied Physics Letters 68, 1504 (1996).Google Scholar
  8. 8.
    M.J. Lercel, G.F. Redinbo, M. Rooks, R.C. Tiberio, H.G. Craighead, C.W. Sheen, and D.L. Allara, Microelectronic Engineering 13, 43 (1995).Google Scholar
  9. 9.
    A.D. Mehta, M. Rief, J.A. Spudich, D.A. Smith, and R.M. Simmons, Science 283, 1689 (1999).Google Scholar
  10. 10.
    C.D. Montemagno and G.D. Bachand, Nanotechnology 10, 225 (1999).Google Scholar
  11. 11.
    H. Noji, R. Yashuda, M. Yoshida, and K. Kinosita Jr, Nature 386, 299 (1997).Google Scholar
  12. 12.
    A. Oplatka, Biochemical and Biophysical Communications 246, 301 (1998).Google Scholar
  13. 13.
    R.K. Soong, S.J. Stelick, G.D. Bachand, and C.D. Montemagno, Evaluating Adhesion Strength of Biological Molecules to Nanofabricated Substrates, in Technical Proceedings of the Second Conference on Modeling and Simulation of Microsystems (Computational Publications, Cambridge, 1999), 95-98.Google Scholar
  14. 14.
    M.D. Wang, M.J. Schnitzer, H. Yin, R. Landick, J. Gelles, and S.M. Block, Science 282, 902 (1998).Google Scholar
  15. 15.
    R. Yashuda, H. Noji, K. Kinosita Jr, and M. Yoshida, Cell 93, 1117 (1998).Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • George D. Bachand
    • 1
  • Carlo D. Montemagno
    • 1
  1. 1.Department of Agricultural and Biological EngineeringCornell UniversityIthaca

Personalised recommendations