Impacts of anthropogenic stresses on the early development stages of seaweeds

  • Susana M. Coelho
  • Jan W. Rijstenbil
  • Murray T. Brown


Seaweeds are important primary producers, and as such contributesignificantly to nearshore ecosystems. Studies on the effects ofanthropogenic stresses on these organisms have largely been concernedwith the vegetative adult stages of the life cycle. Here we review thelimited information on the sensitivity of early stages in the life cycleof seaweeds to global change (UV increase; global warming;increased storm frequencies) and pollution (eutrophication, trace metalsand oil). Impacts on fertility, substrate attachment, development,photosynthesis, growth and mortality are highlighted. In their naturalhabitats, early stages are shade-adapted, as they live shel tered underadult canopies and in pores of the substrata. Although some acclimationunder increased moderate irradiance is seen, higher solar irradiance,and especially ultraviolet-B, inhibits early development. Global warmingmay decrease the fertility and shorten the fertile period of somespecies. With the increasing likelihood of storms associated with globalwarming, gamete release may be inhibited while scouring by suspendedsediments may detach newly settled stages. Succession and localdistribution patterns are likely to be affected. Eutrophication canresult in accelerated development of the early stages of some algalspecies but sewage discharges have a negative impact on sperm motility,fertilisation and can cause increased mortality in germlings. Impacts ofother, indirect effects of eutrophication, including increased sedimentcover of substrata, scouring caused by wind-induced resuspension ofsediments, and grazing, are also expected to be negative. Toxic tracemetals affect gamete viability, inhibit fertilisation and development,and reduce growth rates. Gametes are particularly susceptible to oilpollution and interactions between hydrocarbons and the adhesive mucussurrounding the embryonic stages seem to inhibit settlement.Recommendations for future studies are provided that are aimed atgaining greater insight into the effects of anthropogenic stress on theweakest links in the development cycle of seaweeds.

seaweeds juvenile stages stress factors UV radiation global warming eutrophication trace metal pollution oil pollution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amsler, C. & M. Neushul, 1989. Chemostatic effects of nutrients on spores of the kelps Macrocystis pyrifera and Pterygophora californica. Mar. Biol. 102: 557–564.Google Scholar
  2. Amsler, C. & M. Neushul, 1990. Nutrient stimulation of spore settlement in the kelps Pterygophora californica and Macrocystis pyrifera. Mar. Biol. 107: 297–304.Google Scholar
  3. Amsler, C. & M. Neushul, 1991. Photosynthetic physiology and chemical composition of spores of the kelps Macrocystis pyrifera, Nereocystis luetkeana, Laminaria farlowii and Pterigophora californica (Phaeophyceae). J. Phycol. 27: 26–34.Google Scholar
  4. Amsler, C., D. Reed & M. Neushul, 1992. The microclimate inhabited by macroalgal propagules. Br. Phycol. J. 27: 253–270.Google Scholar
  5. Anderson, B. S. & J. W. Hunt, 1988. Bioassay methods for evaluating the toxicity of heavy metals, biocides and sewage effluent using microscopic stages of giant kelp Macrocystis pyrifera (Agardh.): A preliminary report. Mar. Environ. Res. 26: 113–134.Google Scholar
  6. Anderson, B. S., J. W. Hunt, S. L. Turpen, A. R. Coulon & M. Martin, 1990. Copper toxicity to microscopic stages of giant kelp Macrocystis pyrifera: Interpopulation comparisons and temporal variability. Mar. Ecol. Prog. Ser. 68: 147–156.Google Scholar
  7. Andersson, S. & L. Kautsky, 1996. Copper effects on reproductive stages of Baltic Sea Fucus vesiculosus. Mar. Biol. 125: 171–176.Google Scholar
  8. Andersson, S., L. Kautsky & N. Kautsky, 1992. Effects of salinity and bromine on zygotes and embryos of Fucus vesiculosus from the Baltic Sea. Mar. Biol. 114: 661–665.Google Scholar
  9. Andersson, S., L. Kautsky & A. Kalvas, 1994. Circadian and lunar gamete release in Fucus vesiculosus L. in the atidal Baltic Sea. Mar. Ecol. Prog. Ser. 110: 195–201.Google Scholar
  10. Ang, P., 1985. Studies on the recruitment of Sargassum spp. (Fucales, Phaeophyta) in Balibago, Calatagan, Philippines. J. Exp. Mar. Biol. Ecol. 91: 293–301.Google Scholar
  11. Ang, P. & R. De Wreede, 1990. Matrix models for algal life history stages. Mar. Ecol. Prog. Ser. 59: 171–181.Google Scholar
  12. Barry, J. P., C. M. Baxter, R.D. Sagarin & S. E. Gilman, 1995. Climate-related, long-term faunal changes in a Californian rocky intertidal community. Science 267: 672–675.Google Scholar
  13. Beach, K. S., C. M. Smith, T. Michael & H. W. Shin, 1995. Photosynthesis in reproductive unicells of Ulva fasciata and Enteromorpha flexuosa: Implications for ecological success. Mar. Ecol. Prog. Ser. 125: 229–237.Google Scholar
  14. Beardall, J., S. Beer & J. A. Raven, 1998. Biodiversity of marine plnats in an era of climate change: Some predictions based on physiological performance. Bot. Mar. 41: 113–123.Google Scholar
  15. Bellgrove, A., M. Clayton & G. Quinn, 1997. Effects of secondarily treated sewage effluent on intertidal macroalgal recruitment processes. Mar. Freshwatr. Res. 48: 137–146.Google Scholar
  16. Bond, P., M. T. Brown, R. M. Moate, M. Gledhill, S. J. Hill & M. Nimmo, 1999. Arrested development in Fucus spiralis germlings exposed to copper. Eur. J. Phycol. 39: 513–521.Google Scholar
  17. Brawley S., 1991. The fast block against polyspermy in fucoid algae is an electrical block. Dev. Biol. 144: 94–106.Google Scholar
  18. Brawley S., 1992 Fertilization in natural populations of the dioecious brown algae Fucus ceranoides L. and the importance of the polyspermy block. Mar. Biol. 113: 145–157.Google Scholar
  19. Brawley, S. & L. E. Johnson, 1991. Survival of fucoid embryos in the intertidal zone depends upon developmental stage and microhabitat. J. Phycol. 27: 179–186.Google Scholar
  20. Brown, M. T. & M. H. Depledge, 1998. Determinants of trace metal concentrations in marine organisms. In: Langston, W. J. & M. J. Bebiano (eds), Metal Metabolism in Aquatic Environments. Chapman & Hall, London: 185–217.Google Scholar
  21. Brown, V. B., S. Davies & R. Synnot, 1990. Long-term monitoring of the effects of treated sewage effluent on the intertidal macroalgal community near Cape Schanck, Victoria, Australia. Bot. Mar. 33: 85–98.Google Scholar
  22. Burgess, R. M., K. A. Schweitzer, R. A. McKinney & D. K. Phelps, 1993. Contaminated marine sediments: Water column and interstitial toxic effects. Environ. Tox. Chem. 12: 127–138.Google Scholar
  23. Burrows, E. M. & C. Pybus, 1971. Laminaria saccharina and marine pollution in north-east England. Mar. Poll. Bull. 2: 53–56.Google Scholar
  24. Chapman, A. R. O., 1989. Abundance of Fucus spiralis and ephemeral seaweeds in a high eulittoral zone: Effects of grazers, canopy and substratum type. Mar. Biol. 102: 565–572.Google Scholar
  25. Chapman, A. R. O., 1990. Effects of grazing, canopy cover and substratum type on the abundance of common species of seaweeds inhabiting littoral fringe tide pools. Bot. Mar. 33: 319–326.Google Scholar
  26. Chung, I. K. & B. H. Brinkhuis, 1986. Copper effects in early stages of the kelp Laminaria saccharina. Mar. Poll. Bull. 17: 213–218.Google Scholar
  27. Clayton, M., 1992. Propagules of marine macroalgae: structure and development. Br. Phycol. J. 27: 219–232.Google Scholar
  28. Creed, J. C., T. A. Norton & S. P. Harding, 1996. The development of size structure in a young Fucus serratus population. Eur. J. Phycol. 31: 203–209.Google Scholar
  29. Creed, J. C., T. A. Norton & J. M. Kain, 1997. Intraspecific competition in Fucus serratus germlings: The interaction of light, nutrients and density. J. Exp. Mar. Biol. Ecol. 212: 211–223.Google Scholar
  30. Davison, I. R., 1991. Environmental effects on algal photosynthesis: Temperature. J. Phycol. 27: 2–8.Google Scholar
  31. Davison, I. R., L. Johnson & S. Brawley, 1993. Sublethal stress in the intertidal zone: Tidal emersion inhibits photosynthesis and retards development in embryos of the brown alga Pelvetia fastigiata. Oecologia 96: 483–492.Google Scholar
  32. Dayton, P. K., 1984. Processes structuring some marine communities: Are they general? In: Strong, D. R., D. Simberloff, L. Abele & A. Thisle (eds), Ecological Communities: Conceptual Issues and the Evidence. Princetown Univ. Press, Princetown, New Jersey: 181–197.Google Scholar
  33. Dayton, P. & M. Tegner, 1990. Bottoms beneath troubled waters: Benthic impacts of the 1982–1984 El Niño in the temperate zone. In: Glynn, P. (ed.), Global Ecological Consequences of the 1982–1983 El Niño/Southern Oscillation. Elsevier, Amsterdam: 433–465.Google Scholar
  34. Devinny, J. & L. Volse, 1978. Effects of sediments on the development of Macrocystis pyrifera gametophytes. Mar. Biol. 48: 343–348.Google Scholar
  35. Deysher, L. & T. Norton, 1992. Dispersal and colonization in Sargassum muticum (Yendo) Fensholt. J. Exp. Mar. Biol. Ecol. 56: 179–195.Google Scholar
  36. Doblin, M. A. & M. N. Clayton, 1995. Effects of secondarily treated sewage effluent on the early life-history stages of two species of brown macroalgae: Hormosira banksii and Durvillaea potatorum. Mar. Biol. 122: 689–698.Google Scholar
  37. Dring, M. J., V. Makarov, E. Schoschina, M. Lorenz & K. Lüning, 1996. Influence of ultraviolet radiation on chlorophyll fluorescence and growth in different life-history stages of three species of Laminaria (Phaeophyta). Mar. Biol. 126: 183–191.Google Scholar
  38. Duarte, C., 1995. Submerged aquatic vegetation in relation to different nutrient regimes. Ophelia 41: 87–112.Google Scholar
  39. Emerson, S. & J. Zedler, 1978. Recolonization of intertidal algae: An experimental study. Mar. Biol. 44: 315–324.Google Scholar
  40. Fei, X., B. Jiang, M. Ding, Y. Wu, R. Huang & H. Li, 1989. Light demends of juvenile Laminaria japonica. Chin. J. Oceanol. Limnol. 7: 1–9.Google Scholar
  41. Fletcher, R. & M. Callow, 1992. The settlement, attachment and establishment of marine algal spores. Br. Phycol. J. 27: 303–329.Google Scholar
  42. Franklin, L. & R. Forster, 1997. The changing irradiance environment: Consequences for marine macrophyte physiology, productivity and ecology. Eur. J. Phycol. 32: 207–232.Google Scholar
  43. Garding E., 1996. Effects of eutrophication and Cladophora on the survival of Fucus vesiculosus zygotes in the Baltic Sea. M.SC thesis, Univeristy of Stockholm, 24 pp.Google Scholar
  44. Garman, G. D., M. Pillai & G. N. Cherr, 1994. Inhibition of cellular events during early algal gametophyte development: Effects of select metals and an aqueous petroleum waste. Aquatic Toxicol. 28: 127–144.Google Scholar
  45. Gledhill, M., M. Nimmo, S. J. Hill & M. T. Brown, 1997. The toxicity of copper (II) species to marine algae, with particular reference to macroalgae. J. Phycol. 33: 2–11.Google Scholar
  46. Graham M., 1996. Effect of high irradiance on recruitment of the giant kelp Macrocystis (Phaeophyta) in shallow water. J. Phycol. 32: 903–906.Google Scholar
  47. Gunnill F., 1985. Population fluctuations of seven macroalgae in Southern California during 1981–1983 including effects of severe storms and an El Niño. J. Exp. Mar. Biol. Ecol. 85: 149–164.Google Scholar
  48. Han, T. & J. Kain, 1996. Effects of photon irradiance and photoperiod on young sporophytes of four species of the Laminariales. Eur. J. Phycol. 31: 233–240.Google Scholar
  49. Hanelt, D., C. Wiencke & U. Karsten, 1997. Photoinhibition and recovery after high light stress in different developmental and life-history stages of Laminaria saccharina (Phaeophyta). J. Phycol. 33: 387–395.Google Scholar
  50. Hardy, F. & B. Moss, 1979. Attachment and development of the zygotes of Pelvetia canaliculata (L.) Dcne. et Thur. (Phaeophyceae, Fucales). Phycologia, 18: 203–212.Google Scholar
  51. Hopkin, R. & J. M. Kain, 1978. The effects of some pollutants on the survival, growth and respiration of Laminaria hyperborea. Estuar. Coast. Mar. Sci. 7: 531–553.Google Scholar
  52. Johnson, C. S., 1977. The sub-lethal effects of water soluble extracts of crude oil on the fertilization and development of Fucus serratus L. (serrrated wrack). Rapp. P. Réun. Int. Explor. Mer. 171: 184–185.Google Scholar
  53. Juno, P., P. Worest & C. Janetos, 1989. Scientific linkages in global change. Ecol. Res. Ser. U.S. Environm. Prot. Agency, 18 pp.Google Scholar
  54. Kain, J. M. & T. A. Norton, 1990. Marine ecology. In: Cole, K. M. & R. G. Sheath (eds), Biology of the Red Algae. Cambridge University Press: 377–422.Google Scholar
  55. Kamermans, P., E. J. Malta, J. M. Verschuure, L. F. Lentz & L. Schrijvers, 1998. Role of cold resistance and burial for winter survival and spring initiation of an Ulva spp. (Chlorophyta) bloom in a eutrophic lagoon (Verse Meer lagoon, The Netherlands). Mar. Biol. 131: 45–51.Google Scholar
  56. Kendrick, G. & D. Walker, 1994. Role of recruitment in structuring beds of Sargassum spp. (Phaeophyta) at Rottnest Island, Wetern Australia. J. Phycol. 30: 200–208.Google Scholar
  57. Kiiriki, M & A. Lehvo, 1997. Life strategies of filamentous algae in the northern Baltic Proper. Sarsia 82: 259–267.Google Scholar
  58. Leukart, P. & K. Lüning 1994, Minimal spectral light requirements and maximum light levels for long term germling growth of several red algae from different water depths and a green algae. Eur. J. Phycol. 29: 103–112.Google Scholar
  59. Littler, M. & S. Murray, 1975. Impact of sewage on the distribution, abundance and community structure of rocky intertidal macroorganisms. Mar. Biol. 30: 277–291.Google Scholar
  60. Lignell, A., G. M. Roomans & M Pedersen, 1982. Localization of absorbed cadmium in Fucus vesiculosus by X-ray microanalysis. Z. Pflanzenphysiol. 105: 103–109.Google Scholar
  61. Lobban, C. S. & P. J. Harrison, 1994. Seaweed Ecology and Physiology. Cambridge University Press, pp. 366.Google Scholar
  62. Lubchenco J., 1986. Relative importance of competition and predation: Early colonization by seaweeds in New England. In: Diamond, J. (ed.), Community Ecology. Harper & Row, New York: 537–555.Google Scholar
  63. Lüning, K. & M. Neushul, 1978. Light and temperature demands for growth and reproduction of laminarian gametophytes in Southern and Central California. Mar. Biol. 45: 297–309.Google Scholar
  64. Lüning, K. & M. Dring, 1975. Reproduction, growth and photosynthesis of gametophytes of Laminaria saccharina grown in blue and red light. Mar. Biol. 29: 195–200.Google Scholar
  65. Lüning, K., 1980. Critical levels of light and temperature regulating the gametogenesis of three Laminaria species (Phaeophyceae). J. Phycol. 16: 1–15.Google Scholar
  66. McLachlan, J. & R. Bidwell, 1978. Photosynthesis of eggs, sperm, zygotes and embryos of Fucus serratus. Can. J. Bot. 56: 371–373.Google Scholar
  67. Madsen, T. V. & S. C. Maberly, 1990. A comparison of air and water as environments for photosynthesis by the intertidal algae Fucus spiralis (Phaeophyta). J. Phycol. 26: 24–30.Google Scholar
  68. Maier, I., 1993. Gamete orientation and induction of gametogenesis by pheromones in algae and plants. Plant, Cell Environ. 16: 891–907.Google Scholar
  69. Maier, I., 1995. Brown algal pheromones, In: Chapman, R. (ed.), Progress in Phycological. Research, Biopress Ltd.: 51–102.Google Scholar
  70. Major, K. M. & I. Davison, 1998. Influence of temperature and light on growth and photosynthetic physiology of Fucus evanescens (Phaeophyta) embryos. Eur. J. Phycol. 33: 129–138.Google Scholar
  71. Markham, J. W., B. P. Kremer & K. R. Sperling, 1980. Effects of cadmium on Laminaria saccharina in culture. Mar. Ecol. Prog. Ser. 3: 31–39.Google Scholar
  72. Mathieson, A., 1982. Physiological ecology of the brown algae Phaeostrophion irregulare Setchell et Gardner: I. Juvenile plants. Bot. Mar. 25: 87–91.Google Scholar
  73. Moss, B., S. Mercer & A. Sheader, 1973. Factors affecting the distribution of Himanthalia elongata (L.) S. F. Gray on the North-east Coast of England. Estuar. Coast. Mar. Sci. 1: 233–243.Google Scholar
  74. Neushul, M., M. S. Foster, D. A. Coon, J. W. Woessner & B. W. W. Harger, 1976. An in situ study of recruitment, growth and survival of subtidal marine algae: Techniques and preliminary results. J. Phycol. 12: 397–408.Google Scholar
  75. Norton, T., 1978. The factors influencing the distribution of Saccorhiza polyschides in the region of Lough Ine. J. Mar. Biol. Ass. U.K. 58: 527–536.Google Scholar
  76. Norton, T., 1983. The resistance to dislodgement of Sargassum muticum germlings under defined hydrodynamic conditions. J. Mar. Biol. Ass. U.K. 63: 181–193.Google Scholar
  77. Norton, T. & R. Fetter, 1981. The settlement of Sargassum muticum propagules in stationary and flowing water. J. Mar. Biol. Ass. U.K. 61: 929–940.Google Scholar
  78. Norton, T., A. Mathieson & M. Neushul, 1982. A review of some aspects of form and function in seaweeds. Bot. Mar. 25: 501–510.Google Scholar
  79. Novaczek I., 1984. Response of Ecklonia radiata (Laminariales) to light at 15 °C with reference to the field light budget at Goat island Bay, New Zealand. Mar. Biol. 80: 263–272.Google Scholar
  80. Oates, B. & S. Murray, 1983. Photosynthesis, dark respiration and desiccation resistance of the intertidal seaweeds Hesperophycus harveyanus and Pelvetia fastigiata f. gracilaris. J. Phycol. 19: 371–380.Google Scholar
  81. Oliver, J. & R. Babcock, 1992. Aspects of the fertilization ecology of broadcast spawning corals: Sperm dilution effects and in situ measurements of fertilization. Biol. Bull. 183: 409–417.Google Scholar
  82. Pakker, H. & A. M. Breeman, 1994. Temperature ecotypes in seaweeds-adative significance and biogeographic implications. Bot. Mar. 37: 171–180.Google Scholar
  83. Pearson, G. & S. Brawley, 1996. Reproductive ecology of Fucus distichus (Phaeophyceae): an intertidal algae with successful external fertilization. Mar. Ecol. Prog. Ser. 143: 211–223.Google Scholar
  84. Pearson, G., E. Serrão & S. Brawley, 1998. Control of gamete release in fucoid algae: Sensing hydrodynamic conditions via carbon acquisition. Ecology 79(5).Google Scholar
  85. Petersen, C., Warner, R., Cohen, S., Hess, H. & Sewell, A., 1992. Variable pelagic fertilization success: Implications for mate choice and spacial patterns of mating. Ecology 73: 391–401.Google Scholar
  86. Phillips, G., D. Eminson & B. Moss, 1978. A mechanism to account for macrophyte decline in progressively eutrophicated freshwaters. Aquat. Bot. 4: 103–126.Google Scholar
  87. Rao, M. U. & N. Kaliaperumal, 1983. Effects of environmental factors on the liberation of spores from some red algae of Visakhapatnam coast. J. Exp. Mar. Biol. Ecol. 70: 45–53.Google Scholar
  88. Ramus J., 1992. Productivity of seaweeds. In: Falkowski, P. G. & A. D. Woodhead (eds), Primary Productivity and Biogeochemical Cycles in the Sea. Plenum Press, New York: 239–255.Google Scholar
  89. Raven, J. A., 1992. The coastal fringe: Habitats threatened through global warming. Trans. Bot. Soc. Edin. 45: 437–462.Google Scholar
  90. Reed D., 1990. The effects of variable settlement and early competition on patterns of kelp recruitment. Ecology 71: 776–787.Google Scholar
  91. Reed, D. & M. Foster, 1994. The effects of canopy shading on algal recruitment and growth in a giant kelp forest. Ecology 65: 937–948.Google Scholar
  92. Reed, D., C. Amsler & A. Ebeling, 1992. Dispersal in kelps: Factors affecting spore swimming and competency. Ecology 73: 1577–1585.Google Scholar
  93. Rodrigo, M. & R. R. Robaina, 1997. Stress tolerance of photosynthesis in sporelings of the red alga Grateloupia doryphora compared to that of stage III thalli. Mar. Biol. 128: 689–694.Google Scholar
  94. Santelices, B., 1990. Patterns of reproduction, dispersal and recruitment in seaweeds. Ocean. Mar. Biol. Ann. Rev. 28: 177–276.Google Scholar
  95. Scanlan, C. M. & M. Wilkinson, 1987. The use of seaweeds in biocide toxicity testing. Part 1: The sensitivity of different stages in the life-history of Fucus and of other algae, to certain biocides. Marine Environ. Res. 21: 11–29.Google Scholar
  96. Scarlett, A., M.E. Donkin, T.W. Fileman & P. Donkin, 1997. Occurrence of the marine antifouling agent Irgarol 1051 within the Plymouth Sound locality: Implications for the green macroalga Enteromorpha intestinalis. Mar. Pollut. Bull. 34: 645–651.Google Scholar
  97. Schories, D. & K. Reise, 1993. Germination and anchorage of Enteromorpha spp. in sediments of the Wadden Sea. Helgolander Meeresunters 47: 275–285.Google Scholar
  98. Serrão, E., L. Kautsky & S. H. Brawley, 1996a. Distributional success of the marine seaweed Fucus vesiculosus in the brackish Baltic Sea correlates with osmotic capabilities of Baltic gametes. Oecologia 107: 1–12.Google Scholar
  99. Serrão, E., G. Pearson, L. Kautsky & S. H. Brawley, 1996b. Successful external fertilization in turbulent environments. Proc. Natl. Acad. Sci. USA, 93: 5286–5290.Google Scholar
  100. Stromgren, T., 1980a. The effect of dissolved copper on the increase in length of four species of intertidal brown algae. Mar. Environ. Res. 3: 5–13.Google Scholar
  101. Stromgren, T., 1980b. The effect of lead, cadmium and mercury on the increase in length of five intertidal Fucales. J. exp. Mar. Biol. Ecol. 43: 107–119.Google Scholar
  102. Thélin, I., 1981. Effets, en culture, de deux pétroles bruts et dún dispersant pétrolier sur les zygotes et des plantules de Fucus serratus Linneaus (Fucales, Phaeophyceae). Bot. Mar. 24: 515–519.Google Scholar
  103. Underwood, A. J. & P. G. Fairweather, 1989. Supply-side ecology and benthic marine assemblages. Trends Ecol. Evol. 4: 16–20.Google Scholar
  104. Vadas, R. L., W. A. Wright & S. L. Miller, 1990. Recruitment of Ascophyllum nodosum: Wave action as a source of mortality. Mar. Ecol. Prog. Ser. 61: 263–272.Google Scholar
  105. Vadas, S., S. Johnson & T. A. Norton, 1992. Recruitment and mortality of early post-settlement stages of benthic algae. Br. Phycol. J. 27: 331–335.Google Scholar
  106. Vogt, H. & W. Schramm, 1991. Conspicuous decline of Fucus in Kiel Bay (Western Baltic): What are the causes? Mar. Ecol. Prog. Ser. 69: 189–194.Google Scholar
  107. Wood, W., 1987. Effect of solar ultraviolet radiation on the kelp Ecklonia radiata. Mar. Biol. 96: 143–150.Google Scholar
  108. Wright, P. J. & R. H. Reed, 1990. Effects of osmotic stress on gamete size, rhizoid initiation and germling growth in fucoid algae. Br. Phycol. J. 25: 149–155.Google Scholar
  109. Yabe, K., M. Makino & M. Suzuki, 1997. Growth inhibition on gametophytes of Laminaria religiosa induced by UV-B irradiation. Fisheries Science 63: 668–670.Google Scholar
  110. Zimmerman, R. & J. Kremer, 1984. Episodic nutrient supply to a kelp forest ecosystem in Southern California. J. Mar. Res., 1984. 42: 591–604.Google Scholar
  111. Zimmerman, R. & D. Robertson, 1985. Effects of El Niño on local hydrography and growth of the giant kelp, Macrocystis pyrifera, at Santa Catalina Island, California. Limnol. Oceanogr. 30: 1298–1302.Google Scholar
  112. Zupan, J. & J. West, 1990. Photosynthetic responses to light and temperature of the heteromorphic marine alga Mastocarpus papillatus (Rhodophyta). J. Phycol. 26: 232–239.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Susana M. Coelho
    • 1
    • 2
  • Jan W. Rijstenbil
    • 2
  • Murray T. Brown
    • 1
  1. 1.Marine Biology and Ecotoxicology Group, Department of Biological Sciences and Plymouth Environmental Research CentreUniversity of PlymouthPlymouthU.K.
  2. 2.Centre for Estuarine and Coastal EcologyNetherlands Institute of EcologyYersekeThe Netherlands

Personalised recommendations