Advertisement

Algebras and Representation Theory

, Volume 2, Issue 3, pp 269–285 | Cite as

Primitive and Poisson Spectra of Twists of Polynomial Rings

  • Michaela Vancliff
Article

Abstract

A family of flat deformations of a commutative polynomial ring S on n generators is considered, where each deformation B is a twist of S by a semisimple, linear automorphism σ of ℙn−1, such that a Poisson bracket is induced on S. We show that if the symplectic leaves associated with this Poisson structure are algebraic, then they are the orbits of an algebraic group G determined by the Poisson bracket. In this case, we prove that if σ is 'generic enough', then there is a natural one-to-one correspondence between the primitive ideals of B and the symplectic leaves if and only if σ has a representative in GL(ℂ n ) which belongs to G. As an example, the results are applied to the coordinate ring \(\mathcal{O}_q (M_2 )\) of quantum 2 × 2 matrices which is not a twist of a polynomial ring, although it is a flat deformation of one; if q is not a root of unity, then there is a bijection between the primitive ideals of \(\mathcal{O}_q (M_2 )\) and the symplectic leaves.

twisted homogeneous coordinate ring symplectic leaf Poisson manifold primitive ideal quantum matrices 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Artin, M., Tate, J. and Van den Bergh, M.: Some algebras associated to automorphisms of elliptic curves, in: P. Cartier et al. (eds), The Grothendieck Festschrift 1, Birkhäuser, Basel, 1990, pp. 33-85.Google Scholar
  2. 2.
    Artin, M., Tate, J. and Van den Bergh, M.: Modules over regular algebras of dimension 3, Invent. Math. 106 (1991), 335-388.Google Scholar
  3. 3.
    Brown, K. A. and Goodearl, K. R.: Prime spectra of quantum semisimple groups, Trans. Amer. Math. Soc. 348(6) (1996), 2465-2502.Google Scholar
  4. 4.
    Dixmier, J.: Enveloping Algebras, North-Holland, Amsterdam, 1977.Google Scholar
  5. 5.
    Drinfel'd, V. G.: Quantum groups, in: Proc. Internat. Congr. Math. Berkeley 1, 1986, pp. 798-820.Google Scholar
  6. 6.
    Faddeev, L. D., Reshetikhin, N. Yu. and Takhtadzhyan, L. A.: Quantization of Lie groups and Lie algebras, Leningrad Math. J. 1(1) (1990), 193-225.Google Scholar
  7. 7.
    Hodges, T. J. and Levasseur, T.: Primitive ideals of ℂq[SL(3)], Comm. Math. Phys. 156(3) (1993), 581-605.Google Scholar
  8. 8.
    Hodges, T. J. and Levasseur, T.: Primitive ideals of ℂq[SL(n)], J. Algebra 168(2) (1994), 455-468.Google Scholar
  9. 9.
    Joseph, A.: Idéaux premiers et primitifs de l'algèbre des fonctions sur un groupe quantique, C.R. Acad. Sci. Paris, Sér. I 316 (1993), 1139-1142.Google Scholar
  10. 10.
    Joseph, A.: On the prime and primitive spectra of the algebra of functions on a quantum group, J. Algebra 169 (1994), 441-511.Google Scholar
  11. 11.
    Joseph, A.: Quantum Groups and their Primitive Ideals, Ergeb. Math. Grenzgeb. (3) 29, Springer-Verlag, Berlin, 1995.Google Scholar
  12. 12.
    Kirillov, A. A.: Local Lie algebras, Uspekhi Mat. Nauk 31(4) (1976), 57-76; English transl. in Russian Math. Surveys 31 (1976).Google Scholar
  13. 13.
    Vancliff, M.: Quadratic algebras associated with the union of a quadric and a line in ℙ3, J. Algebra 165(1) (1994), 63-90.Google Scholar
  14. 14.
    Vancliff, M.: The defining relations of quantum n × n matrices, J. London Math. Soc. 52(2) (1995), 255-262.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Michaela Vancliff
    • 1
  1. 1.Department of MathematicsUniversity of Texas at ArlingtonArlingtonU.S.A.

Personalised recommendations