Journal of Aquatic Ecosystem Stress and Recovery

, Volume 7, Issue 3, pp 187–199 | Cite as

Biological responses of the sea urchin, Arbacia punctulata, to lead contamination for an estuarine ecological risk assessment

  • Diane Nacci
  • Jonathan Serbst
  • Timothy R. Gleason
  • Stephanie Cayula
  • Glen Thursby
  • Wayne R. MunnsJr.
  • Ronert K. Johnston
Article

Abstract

An estuarine ecological risk assessment for thePortsmouth Naval Shipyard (PNS) Kittery, ME, wasconducted utilizing the U.S. EPA's Framework forEcological Risk Assessment (ERA). As part of theanalysis phase of the ERA, laboratory studies wereconducted to develop quantitative exposure-responserelationships for lead (Pb), a key contaminant ofconcern for PNS, in order to evaluate the role of Pbin the ecological stress observed near PNS, and toestimate the probability of ecological risk associatedwith Pb contamination at the site. Biological effectsof exposure to Pb via sediment or diet were evaluatedusing several life stages of the sea urchin, Arbacia punctulata. This strategy was employedbecause echinoderm species, including A.punctulata, are amenable to laboratory testing andhave been used frequently to assess the toxicity ofestuarine waters and sediments. In addition, lifestage-specific biological effects could be comparedand integrated into projections of population-levelresponses to Pb. Results indicated that adult seaurchins accumulated Pb in direct proportion toexposure medium Pb concentration, whether exposureoccurred via sediment or diet. High Pb concentrationsreduced survival and gamete production in females, buthad no effect on the viability of produced gametes. Aqueous Pb exposure concentrations that producedadverse effects on adult sea urchin survival andreproduction were also directly toxic to early lifestages. In addition to their utility for this ERA,these results have applicability for the prediction ofbiological effects or the retrospective analysis ofcausal relationships at other estuarine sites.

estuarine risk assessment metals lead invertebrates 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amiard-Triquet, C., S. Altmann, J.C. Amiard, C. Ballan-Dufrançais, P. Baumard, H. Budzinski, C. Crouzet, P. Garrigues, E. His, A.Y. Jeantet, R. Menasria, P. Mora, C. Mouneyrac, J.F. Narbonne & J.F. Pavillon, 1998. Fate and effects of micropollutants in the Gironde Estuary, France: a multidisciplinary approach. Hydrobiologia 373/374 (Developments in Hydrobiology 131): 259–279.Google Scholar
  2. Ankley, G.T., N.A. Thomas, D.M. Di Toro, D.J. Hansen, J.D. Mahony, JD, W.J. Berry, R.C. Swartz, R.A. Hoke, A.W. Garrison, H.E. Allen & C.S. Zarba, 1994. Assessing potential bioavailability of metals in sediments: A proposed approach. Environ. Manage. 18(3): 331–337.Google Scholar
  3. APHA (American Public Health Association), 1998. Standard Methods for the Examination of Water and Wastewater, 20th edition, Part 8810: Echinoderm Fertilization and Development, pp. 8-114–8-121.Google Scholar
  4. Augier, H, R. Desmerger, M. Egea, E. Imbert, W.K. Park, G. Ramonda & M. Santimone, 1994. Study of heavy metal contamination in harbour-industrial zone of the gulf of Fos-sur-Mer (Mediterranean, France), using biological indicators (mussels and sea urchins). Mar. Life 4(2): 59–67.Google Scholar
  5. Bay, S., R. Burgess & D. Nacci, 1993. Status and applications of echinoid (Phylum Echinodermata) toxicity test methods. In: W.G. Landis, J.S. Hughes & M.A. Lewis (eds), Environmental Toxicology and Risk Assessment, ASTM STP 1179, ASTM, Philadelphia, PA, pp. 281–203.Google Scholar
  6. Berry, W.J., D.J. Hansen, J.D. Mahony, D.L. Robson, D.M. DiToro, B.P. Shipley, B. Rogers, J.M. Corbin & W.S. Boothman, 1996. Predicting the toxicity of metal-spiked laboratory sediments using acid-volatile sulfide and interstitial water normalizations. Environ. Toxicol. and Chem. 15(12): 2067–2079.Google Scholar
  7. Bonnevie, N.L., D.G. Gunster & R.J. Wenning, 1992. Lead contamination in surficial sediments from Newark Bay, New Jersey. Environ. Int. 16(5): 497–508.Google Scholar
  8. Boothman, W. & A. Helmstetter, 1993. Vertical and seasonal variability of acid volatile sulfides in marine sediments. EMAP Research Project, U.S. EPA, Environmental Research Laboratory, Narragansett, RI., 33 pp.Google Scholar
  9. Bright, D.A., S.L. Grundy & K.J. Reimer, 1995. Differential bioaccumulation of non-ortho-substituted and other PCB congeners in coastal Arctic invertebrates and fish. Environ. Sci. Technol. 29(10): 2504–2512.Google Scholar
  10. Bruce, R.D. & D.J. Versteeg, 1992. A statistical procedure for modeling continuous toxicity data. Environmental Toxicology and Chemistry 11: 1485–1494.Google Scholar
  11. Carr, R.S., E.R. Long, H.L. Windom, D.C. Chapman, G. Thursby, G.M. Sloane & D.A. Wolfe, 1996. Sediment quality assessment studies of Tampa Bay, Florida. Environ. Toxicol. Chem. 15(7): 1218–1231.Google Scholar
  12. Cullen, D. & R. Arimoto, 1995. Trace level inorganic analysis of marine and estuarine samples. University of Rhode Island, Graduate School of Oceanography, Narragansett, RI, 16 pp.Google Scholar
  13. Daniels, T.D., D. Cartier, D. Sleczkowski & A.R. Malcolm, 1993. A computer-controlled dosing system for sediment particle suspensions. U.S. EPA, Environmental Research Laboratory, Narragansett, RI.Google Scholar
  14. Dinnel, P.A., Q.J. Stober, J.M. Link, M.W. Letourneau, W.E. Roberts & S.P. Felton, 1983. Methodology and validation of a sperm cell toxicity test for testing toxic substances in marine waters. Final report Grant R/Tox-1, University of Washington, Seattle, WA.Google Scholar
  15. Dinnel, P.A., J.M. Link & Q.J. Stober, 1987. Improved methodology for a sea urchin sperm cell bioassay for marine waters. Arch. Environ. Contam. Toxicol. 16: 23–32.Google Scholar
  16. Dinnel, P.A., 1988. Adaptation of the sperm/fertilization bioassay protocol to Hawaiian sea urchin species. Final report contract #88-405. State of Hawaii Department of Health.Google Scholar
  17. DiToro, D.M, J.D. Mahony, D.J. Hansen, J.K. Scott, A.R. Carlson & G.T. Ankley, 1992. Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments. Environmental Science and Technology 26: 96–101.Google Scholar
  18. Federal Register, 1994. National Priorities List for National Contingency Plan under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 and the Superfund Amendment and Reauthorization Act of 1986.Google Scholar
  19. Gleason, T.G., W.R. Munns, Jr. & D.E. Nacci, 2000. Projecting population-level responses of purple sea urchins to lead contamination for an estuarine ecological risk assessment. J. Aquat. Ecosyst. Stress & Recov. 7: 177–185.Google Scholar
  20. Guillou, M., A. Judas & F. Quiniou, 1995. The influence of environmental factors on the development of the sea urchin Sphaerechinus granularis in the bay of Brest. Programme Rade; 3e Rencontres Scientifiques Internationales: Vol. 1: Journee du 14 Mars 1995., Communaute Urbaine, Brest (France), pp. 266–279.Google Scholar
  21. Johnston, R.K., W.R. Munns, Jr. & D.E. Nacci. 2001. A probabilistic analysis to determine ecological risk drivers. In: B.M. Greenberg, R.N. Hull, M.H. Roberts, Jr. & R.W. Gensemer (eds), Environmental Toxicology and Risk Assessment: Science, Policy, and Standardization – Implications for Environmental Decisions: Tenth Volume, ASTM STP 1403, American Society for Testing and Materials, West Conshohocken, PA.Google Scholar
  22. Johnston, R.K., W.R. Munns, Jr., L. Mills, F.T. Short & H.A. Walker (eds), 1994. An estuarine ecological risk assessment for Portsmouth Naval Shipyard, Kittery, ME: Phase I Final Report. NCCOSC Technical Report 1627, Naval Command, Control and Ocean Surveillance Center, San Diego, CA, 242 pp + Appendices.Google Scholar
  23. Kobayashi, N., 1971. Fertilized sea urchin eggs as an indicatory material for marine pollution bioassay, preliminary experiments. Publ. Seto mar. Biol. Lab. XVIII(6): 379–406.Google Scholar
  24. Long, E.R. and L.G. Morgan, 1990. The potential for biological effects of sediment-sorbed contaminants tested in the National Status and Trends Program. NOAA Technical Memorandum NOS OMA 52, Rockville, MD.Google Scholar
  25. Long, E.R., A. Robertson, D.A. Wolfe, J. Hameedi & G.M. Sloane, 1996. Estimates of the spatial extent of sediment toxicity in major U.S. estuaries. Environ. Sci. Technol. 30(12): 3585–3592.Google Scholar
  26. Long, E.R., D.D. MacDonald, S.L. Smith & F. Calder, 1995. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ. Management 19: 81–97.Google Scholar
  27. Luoma S.N. & J.L. Carter, 1991. Effects of trace metals on aquatic benthos. In: M.C. Newman & A.W. McIntosh (eds), Metal Ecotoxicology: Concepts and Applications, Lewis Publishers, MI, pp. 271–301.Google Scholar
  28. Meidel, S.K. & R.E. Scheibling, 1998. Annual reproductive cycle of the green sea urchin, Strongylocentrotus droebachiensis, in differing habitats in Nova Scotia, Canada. Mar. Biol. 131(3): 461–478.Google Scholar
  29. MESO (Marine Environmental Support Office), 1998. Estuarine Ecological Risk Assessment for Portsmouth Naval Shipyard, Final Report, Volumes I and II. Space and Naval Warfare systems Center, San Diego, CA, 1152 pp.Google Scholar
  30. Mostafa, H.M. and K.J. Collins, 1995. Heavy metal concentrations in sea urchin tissues from Egypt, Ireland and United Kingdom. Chem. Ecol. 10(1–2): 181–190.Google Scholar
  31. Mueller, C., W.R. Munns, Jr., D. Cobb, E.A. Petrocelli, G.G. Pesch, W.G. Nelson, D.M. Burdick, F.T. Short & R.K. Johnston (eds), 1992. Standard operating procedures and field methods for conducting ecological risk assessment case studies: Naval Construction Battalion Center Davisville, RI, and Naval Shipyard Portsmouth, Kittery, ME. NCCOSC Tech. Doc. 2296, Naval Command, Control and Ocean Surveillance Center, San Diego, CA, 470 pp.Google Scholar
  32. Munns, W.R., Jr., R.K. Johnston, D. Nacci, J.H. Gentile, H.A. Walker, G.G. Pesch, F.T. Short & L.G. Ward, 1994. NCCOSC/ERLN case study of estuarine ecological risk assessment at Portsmouth Naval Shipyard, Kittery, Maine: Ecological Risk Assessment Report. U.S. EPA Environmental Research Laboratory, Narragansett, RI. ERLN Contribution No. 1620.Google Scholar
  33. Nacci, D., E. Jackim & R. Walsh, 1986. Comparative evaluation of three rapid marine toxicity tests: sea urchin early growth test, sea urchin sperm cell toxicity test and Microtox. Environ. Toxicol. And Chem. 5: 521–525.Google Scholar
  34. Nacci, D., P. Comeleo, E. Petrocelli, A. Kuhn, G. Modica & G. Morrison, 1991. Performance evaluation of the sperm cell toxicity test using the sea urchin, Arbacia punctulata. In: M.A. Mayes & M.G. Barron (eds), Aquatic Toxicology and Risk Assessment 14th vol, ASTM, Phila., PA, pp. 324–326.Google Scholar
  35. Naidenko, T., 1997. Abnormality of development in Strongylocentrotus intermedius (A. Agassiz) larvae from polluted habitat in Amursky Bay, Peter the Great Bay. Publ. Seto Mar. Biol. Lab. 38(1–2): 1–11.Google Scholar
  36. NCCOSC (Naval Command, Control and Ocean Surveillance Center), 1997. Estuarine ecological risk assessment for Portsmouth Naval Shipyard, Kittery, Maine. Vol. 1: Technical Report, Revised Final Draft.Google Scholar
  37. Okubo, K. & T. Okubo, 1962. Study of the bioassay method for the evaluation of water pollution BII. Use of fertilized eggs of sea urchins and bivalves. Bull. Tokai Fish. Res. Lab. 32: 131.Google Scholar
  38. Pagano, G. E. His, R. Beiras, A. De Biase, L.G. Korkina, M. Iaccarino, R. Oral, F. Quiniou, M. Warnau & N.M. Trieff, 1996. Cytogenetic, developmental, and biochemical effects of aluminum, iron, and their mixture in sea urchins and mussels. Arch. Environ. Contam. Toxicol. 31(4): 466–474.Google Scholar
  39. Ramachandran, S., T.R. Patel & M.H. Colbo, 1997. Effect of copper and cadmium on three Malaysian tropical estuarine invertebrate larvae. Ecotoxicol. Environ. Saf. 36(2): 183–188.Google Scholar
  40. Riveros, A., M. Zuniga, A. Larrain & J. Becerra, 1996. Relationships between fertilization of the southeastern Pacific sea urchin Arbacia spatuligera and environmental variables in polluted coastal waters. Mar. Ecol. Prog. Ser. 134(1–3): 159–169.Google Scholar
  41. Russell, M.P., 1998. Resource allocation plasticity in sea urchins: Rapid, diet induced, phenotypic changes in the green sea urchin, Strongylocentrotus droebachiensis (Mueller). J. Exp. Mar. Biol. Ecol. 220(1): 1–14.Google Scholar
  42. SAS Institute, 1989. SAS7/STAT User's Guide, Version 6 Edition. SAS Institute, Cary, NC.Google Scholar
  43. Short, F.T. (ed.), 1992. The Ecology of the Great Bay Estuary, New Hampshire and Maine: An Estuarine Profile and Bibliography. NOAA – Coastal Ocean Program Publ., 222 pp.Google Scholar
  44. Thompson, B.E., S.M. Bay, J.W. Anderson, J.D. Laughlin, D.J. Greenstein & D.T. Tsukada, 1989. Chronic effects of contaminated sediments on the urchin Lytechinus pictus. Environmental Toxicology and Chemistry 8: 629–637.Google Scholar
  45. Thompson, B.E, S.M. Bay, D.J. Greenstein & J.D. Laughlin, 1991. Sublethal effects of hydrogen sulfide in sediments on the urchin Lytochinus pictus. Marine Environmental Research 31: 309–321.Google Scholar
  46. U.S. EPA, 1980. Ambient Water Quality Criteria for Lead. U.S. Environmental Protection Agency, EPA/440/5-80-057, Washington, DC.Google Scholar
  47. U.S. EPA, 1987. Short-term methods for estimating the chronic toxicity of effluents and receiving waters to marine and estuarine organisms. U.S. Environmental Protection Agency, EPA/600/4-87/028, 416 pp.Google Scholar
  48. U.S. EPA, 1994. Short-term methods for estimating the chronic toxicity of effluents and receiving waters to marine and estuarine organisms. U.S. Environmental Protection Agency, EPA/600/4-91/003, 483 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Diane Nacci
    • 1
    • 2
  • Jonathan Serbst
    • 1
    • 2
  • Timothy R. Gleason
    • 1
    • 2
  • Stephanie Cayula
    • 1
    • 2
  • Glen Thursby
    • 1
    • 2
  • Wayne R. MunnsJr.
    • 1
    • 2
  • Ronert K. Johnston
    • 1
    • 2
  1. 1.Atlantic Ecology DivisionUS Environmental Protection AgencyNarragansettU.S.A
  2. 2.East DetachmentSpace and Naval Warfare Systems CommandMarine Environmental Support OfficeNarragansettU.S.A

Personalised recommendations