Biomedical Microdevices

, Volume 2, Issue 4, pp 317–322 | Cite as

Topographical Patterning of Chemically Sensitive Biological Materials Using a Polymer-Based Dry Lift Off

  • B. Ilic
  • H. G. Craighead
Article

Abstract

Precise placement of biochemicals on device structures and controlling of the cell culture environment are important for tissue engineering, sensors and fundamental studies of cell behavior. In this article, we describe a dry lift-off method that allows patterning of chemically sensitive biological materials on a variety of surfaces. Using a combination of projection lithography and reactive ion etching, a Parylene coated surface is patterned and subsequently coated with a biochemical layer. The Parylene is peeled from the substrate and the desired chemical pattern or cell pattern is formed. We have patterned antibodies, poly-L-lysine and aminopropyltriethoxysilane (APTS) self assembled monolayers. These surfaces were respectively used to pattern Escherichia coli serotype O157:H7 bacteria cells, rat basophilic leukemia (RBL) cells and 20 nm diameter aldehyde-sulfate coated fluorescent polystyrene beads. Typical patterns consisted of arrays of 5 mm long parallel lines of bacteria confined to stripes with widths varying from 2 μm to 20 μm. Such pattern can be made over large areas, and we have done this on areas up to 3 cm2.

biosensors cell patterning lift-off Parylene surface chemical patterning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.F. Taylor, in Handbook of chemical and biological sensors, R.F. Taylor and J.S. Schultz (eds), p. 553, (Institute of Physics Publishing, Bristol, 1996).Google Scholar
  2. 2.
    R.J. Forster, in Principles of chemical and biological sensors, D. Diamond (ed), p. 235, (John Wiley and Sons, Inc., New York, 1998)Google Scholar
  3. 3.
    A.F. Collings and F. Caruso, Rep. Prog. Phys. 60, 1397 (1997).Google Scholar
  4. 4.
    B. Ilic, D. Czaplewski, H.G. Craighead, P. Neuzil, C. Campagnolo, and C. Batt, Appl, Phys. Lett. 77, 450 (2000).Google Scholar
  5. 5.
    D.W. Carr, L. Sekaric, and H.G. Craighead, J. Vac. Sci. Technol. B 16, 3821 (1998).Google Scholar
  6. 6.
    S. Turner, L. Kam, M. Isaacson, H.G. Craighead, W. Shain, and J. Turner, J. Vac. Sci. Technol. B 15, 2848 (1997).Google Scholar
  7. 7.
    K.E. Petersen, Proc. IEEE. 70, 420 (1982).Google Scholar
  8. 8.
    D.W. Wise and K. Najafi, Science 254, 1335 (1991).Google Scholar
  9. 9.
    G.T.A. Kovacs, N.I. Maluf, and K.E. Petersen, Proc. IEEE. 86, 1536 (1998).Google Scholar
  10. 10.
    I. Amato, Technology Review 74, (1999).Google Scholar
  11. 11.
    L.J. Kricka, Nature Biotechnology 16, 513 (1998).Google Scholar
  12. 12.
    R. Singhvi, A. Kumar, G.P. Lopez, G.N. Stephanopoulos, D.I.C. Wang, G.M. Whitesides, and D.E. Ingber, Science 264, 696 (1994).Google Scholar
  13. 13.
    E. Delamarche, A. Bernard, H. Schmid, B. Michel, and H. Biebuyck, Science 276, 779 (1997).Google Scholar
  14. 14.
    C.S. Chen, M. Mrksich, S. Huang, G.M. Whitesides, and D.E. Ingber, Science 276, 1425 (1997).Google Scholar
  15. 15.
    C.D. James, R.C. Davis, L. Kam, H.G. Craighead, M. Isaacson, J.N. Turner, and W. Shain, Langmuir 4, 741 (1998).Google Scholar
  16. 16.
    S. Takayama, J.C. McDonald, E. Ostuni, M.N. Liang, P.J.A. Kenis, R.F. Ismagilov, and G.M. Whitesides, Proc. Natl. Acad. Sci. USA 96, 5545 (1999).Google Scholar
  17. 17.
    P.M. St. John, R. Davis, N. Cady, J. Czajka, C.A. Batt, and H.G. Craighead, Anal. Chem. 70, 1108 (1998).Google Scholar
  18. 18.
    M.J. Feldstein, J.P. Golden, C.A. Rowe, B.D. MacCraith, and S. Ligler, J. Biomed. Microdevices 1, 139 (1999).Google Scholar
  19. 19.
    R. Kapur, K.A. Giuliano, M. Campana, T. Adams, K. Olson, D. Jung, M. Mrksich, C. Vasudevan, and D.L. Taylor, Biomedical Microdevices 2, 99 (1999).Google Scholar
  20. 20.
    H.A. Biebuyck, N.B. Larsen, E. Delamarche, and B. Michel, IBM J. Res. Develop. 41, 159 (1997).Google Scholar
  21. 21.
    Y. Xia and G.M. Whitesides, Angew. Chem. Int. Ed. 37, 550 (1998).Google Scholar
  22. 22.
    N.B. Larsen, H. Biebuyck, E. Delamarchi, and B. Michel, J. Am. Chem. Soc. 119, 3017 (1997).Google Scholar
  23. 23.
    L. Yan, X-M. Zhao, and G.M. Whitesides, J. Am. Chem. Soc. 120, 6179 (1998).Google Scholar
  24. 24.
    B.A. Grzybowski, R. Haag, N. Bowden, and G.M. Whitesides, Anal. Chem. 70, 4645 (1998).Google Scholar
  25. 25.
    P. Yang, T. Deng, D. Zhao, P. Feng, D. Pine, B.F. Chmelka, G.M. Whitesides, and G.D. Stucky, Science 282, 2244 (1998).Google Scholar
  26. 26.
    E. Delamarche, H. Schmid, A. Bietsch, N.B. Larsen, H. Rothuizen, B. Michel, and H. Biebuyck, J. Phys. Chem. B 102, 3324 (1998).Google Scholar
  27. 27.
    W.H. Gorham, J. Polym. Sci. 4, 3027 (1966).Google Scholar
  28. 28.
    M.A. Spivack, Rev. Sci. Inst. 7, 985 (1972).Google Scholar
  29. 29.
    T.E. Baker, S.L. Baggdasarian, G.L. Fix, and J.S. Judge, J. Electrochem. Soc. 124, 897 (1977).Google Scholar
  30. 30.
    M.A. Spivak and G. Ferrante, J. Electrochem. Soc. 116, 1592 (1969).Google Scholar
  31. 31.
    S. Ganguli, H. Agrawal, B. Wang, J.F. McDonald, T.-M. Lu, G.-R. Yang, and W.N. Gill, J. Vac. Sci. Technol. A 15, 3138 (1997).Google Scholar
  32. 32.
    Y.T.C. Yeh and K.R. Grebe, J. Vac. Sci. Technol. A 1, 604 (1983).Google Scholar
  33. 33.
    D.T. Price, R.J. Gutmann and S.P. Muraka, Thin Solid Films 308–309, 523 (1997).Google Scholar
  34. 34.
    S. Rogojevic, J.A. Moore, and W.N. Gill, J. Vac. Sci. Techol. A 17, 266 (1999).Google Scholar
  35. 35.
    W.T. Muller, D.L. Klein, T. Lee, J. Clarke, P.L. McEuen, and P.G. Schultz, Science 268, 272 (1995).Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • B. Ilic
    • 1
  • H. G. Craighead
    • 1
  1. 1.School of Applied and Engineering Physics and Nanobiotechnology CenterCornell UniversityIthaca

Personalised recommendations