Journal of Electroceramics

, Volume 3, Issue 4, pp 329–346

FEATURE ARTICLE Conducting Polymer Composites

  • R. stru¨mpler
  • J. Glatz-Reichenbach

Abstract

Conducting polymer composites become increasingly important for technical applications. In this article, the resulting electrical properties of such materials are illustrated by a variety of experimental examples. It is shown that the combined mechanical, thermal and electrical interaction between the filler particles via their electrical contacts and the surrounding polymer host matrix are responsible for the properties of the composite material. A short review is given of the theoretical background for the understanding of the electrical transport in such materials. The arrangement of the filler particles and the resulting conductivity can be described either by percolation or by effective medium theories. It can also be related to different types of charge carrier transport processes depending on the internal composite structure. Special emphasis is given to the microstructure of the filler particles such as size, hardness, shape and their electrical and thermal conductivities. A detailed analysis of the physics of the contact spots and the temperature development during current flow at the contact is given. It is shown that the polymer matrix has a strong influence on the electrical conductivity due to its elastic properties and the response to external thermal and mechanical stimulation. Strong changes in the electrical conductivity of conducting polymer composites can be realized either by thermal stimuli, leading to a positive and negative temperature coefficient in resistivity, or by applying mechanical stress. By using nonlinear fillers an additional degree of functionality can be achieved with conducting polymers.

polymer composites electrical conductivity filler properties nonlinearity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.P. Kusy, in Metal-Filled Polymers, edited by S.K. Battacharya (Dekker, New York, 1986) p. 1.Google Scholar
  2. 2.
    D. Luch, U.S. Patent 4,009,093 (Feb. 22, 1977)Google Scholar
  3. 3.
    D.M. Lindsey, Prod. Finish July 1979, 34–43 (1979).Google Scholar
  4. 4.
    F. Bueche, J. Appl. Phys., 44, 532 (1973).Google Scholar
  5. 5.
    F.A. Doljack, IEEE Trans. on Comp., Hybrids and Manufact. Techn. CHMT-4, 372 (1981).Google Scholar
  6. 6.
    T. Fang, St Morris, Elektron, January 97, 103–104 (1997).Google Scholar
  7. 7.
    M. Stoessl, Power Control in Motion, June 93, 50–55 (1993).Google Scholar
  8. 8.
    T. Kobayashi and H. Endo, NEC Research and Development, 86, 81–90 (1987).Google Scholar
  9. 9.
    T. Hansson, ABB Review, 4/92, 35 (1992).Google Scholar
  10. 10.
    R.H. Norman, Conductive Rubbers and Plastics (Applied Science Publishers, London, 1970).Google Scholar
  11. 11.
    Carbon Black—Polymer Composites, edited by E.K. Sichel (Dekker, New York, 1982).Google Scholar
  12. 12.
    J. Delmonte, Metal/Polymer Composites (Van Nostrand Reinhold, New York, 1982).Google Scholar
  13. 13.
    L.K.H. van Beek, Progr. Dielect., 7, 69 (1967).Google Scholar
  14. 14.
    S. Nakamura, A. Ito, G. Sawa, and K. Kitagawa, Electronics and Communications in Jpn. 2, Electron. (USA), 75(3), 109 (1992).Google Scholar
  15. 15.
    K.T. Chung, Org. Coat. Appl. Polym. Sci. Proc., 48, 661 (1983).Google Scholar
  16. 16.
    P. Hedvig, Dielectric Spectroscopy in Polymers (Wiley, New York, 1977).Google Scholar
  17. 17.
    E.K. Sichel, J.I. Gittleman, and P. Sheng, Phys. Rev. B, 18, 5712–16 (1978).Google Scholar
  18. 18.
    A.I. Medalia, Rubber Chemistry and Technology, 59, 432–454 (1986).Google Scholar
  19. 19.
    P. Sheng, Phys. Rev. B, 21, 2180–95 (1980).Google Scholar
  20. 20.
    R.D. Sherman, L.M. Middleman, and S.M. Jakobs, Polym. Eng. and Sci., 23, 36–46 (1983).Google Scholar
  21. 21.
    I. Balberg, Phys. Rev. Let., 59, 1305–08 (1987).Google Scholar
  22. 22.
    D.S. McLachlan, M. Blaszkiewicz, and R.E. Newnham, J. Am. Ceram. Soc., 73, 2187–2203 (1990).Google Scholar
  23. 23.
    R.E. Newnham, D.P. Skinner, and L.E. Cross, Mat. Res. Bull., 13, 525 (1978).Google Scholar
  24. 24.
    R. Zallen, The physics of amorphous solids (Wiley, New York, 198) ch. 4.Google Scholar
  25. 25.
    D. Staufer, Introduction to percolation theory (Taylor and Francis, London, U.K., 1985).Google Scholar
  26. 26.
    S. Kirkpatrick Rev. Mod. Phys., 45(4), 574 (1973).Google Scholar
  27. 27.
    W.Y. Hsu, W.G. Holtjeand, and J.R. Barkley, J. Mat Sci. Lett., 7, 459 (1988).Google Scholar
  28. 28.
    J.P. Straley, in Vol. 5, Annals of the Israel Physical Society: Percolation Processes and Structures, edited by G. Deutscher, R. Zallen, and J. Adler (Israel Physical Society, Jerusalem, 1983), p. 353.Google Scholar
  29. 29.
    G.R. Ruschau, S. Yoshikawa, and R.E. Newnham, Proceedings of the 42th Electr. Components & Technology Conf. San Diego, CA, May 18–20, p. 481 (1992).Google Scholar
  30. 30.
    R. Landauer, in American Institute of Physics Conference Proceedings: Electrical Transport and Optical Properties of Inhomogeneous Media, edited by J.C. Garland and D.B. Tanner (American Institute of Physics, New York, 1978), No. 40, p. 2.Google Scholar
  31. 31.
    D.S. McLachlan, J. Phys., C21, 1521 (1988).Google Scholar
  32. 32.
    D.S. McLachlan, Mat. Res. Soc. Symp. Proc., 411, 309 (1996).Google Scholar
  33. 33.
    K.C. Kao and W. Hwang, Electrical Transport in Solids, Int. Series in the Science of the Solid State, Volume 14 (Pergamon Press, Oxford, 1981).Google Scholar
  34. 34.
    A.R. Blythe, Electrical properties of polymers (Cambridge University Press, Cambridge, 1979).Google Scholar
  35. 35.
    L.K.H. van Beek et al., J. Appl. Polymer Sci., 6(24), 651 (1962).Google Scholar
  36. 36.
    J. Frenkel, Physical Review, 36, 1604 (1930).Google Scholar
  37. 37.
    W. Imaino, K. Loeffler, and R. Balanson, in Colloids and Surface in Reprographic Technology ACS Symposium Series 200, p. 249 (American Chemical Society, Washington, 1982).Google Scholar
  38. 38.
    R. Holm, Electrical Contacts, Theory and Application (Springer, New York, 1967).Google Scholar
  39. 39.
    G.R. Ruschau, S. Yoshikawa, and R.E. Newnham, J. Appl. Phys., 81(10), 6786 (1997).Google Scholar
  40. 40.
    A.W. Bush, Contact Mechanics, in Rough Surfaces edited by T.R. Thomas et al. (Longman, London, 1982).Google Scholar
  41. 41.
    Y.A. Dzenis and V.M. Ponomarev, Mek. Komp. Mat., 1, 70 (1988).Google Scholar
  42. 42.
    R. Shima et al., Polymer Composites, 10(6), 409 (1989).Google Scholar
  43. 43.
    T.T. Wang and T.K. Kwei, J. Polym. Sci.: Polym. Phys., 7(5), 889 (1969).Google Scholar
  44. 44.
    B. Budiansky, J. Comp. Mat., 4, 284 (1970).Google Scholar
  45. 45.
    N.W. Ashcroft and N.D. Mermin, Solid State Physics (Holt, Rinehart & Winston, Philadelphia, 1976).Google Scholar
  46. 46.
    M. Heuberger, G. Dietler, R. Strümpler, J. Rhyner, and J. Isberg, J. Appl. Phys., 82(3), 1255 (1997).Google Scholar
  47. 47.
    K. Ohe and Naito, Jap. J. Appl. Phys., 10(1), 99 (1971).Google Scholar
  48. 48.
    A.D. McLeod, J.S. Haggerty, and D.R. Sadoway, J. Am. Ceram. Soc., 67, 705 (1984).Google Scholar
  49. 49.
    G.R. Ruschau, S. Yoshikawa, and R.E. Newnham, J. Appl. Phys., 72, 953 (1992).Google Scholar
  50. 50.
    R. Strümpler, G. Maidorn, and J. Rhyner, J. Appl. Phys., 81(310), 6786 (1997).Google Scholar
  51. 51.
    J.I. Pascual, J. Méndez, J. Gómez-Herrero, A.M. Baró, N. Garcia, U. Landman, W.D. Luedtke, E.N. Bogachek, and H.-P. Cheng, Science, 267, 1793 (1995).Google Scholar
  52. 52.
    L. Zimmermann, M. Weibel, W. Caseri, and U.W. Suter, Polym. for Adv. Techn., 4, 1–7 (1992).Google Scholar
  53. 53.
    J.P. Spatz, A. Roescher, and M. Möller, Adv. Mater., 8(4), 337 (1996).Google Scholar
  54. 54.
    M.P.J. van Staveren, H.B. Brom, and L.J. de Jongh, Physics Reports, 208, 1–96 (1991).Google Scholar
  55. 55.
    G. Schön and U. Simon, Colloid Polym. Sci., 273, 101–117 (1995).Google Scholar
  56. 56.
    A. Tampieri and A. Bellosi, J. Mat. Sci., 28, 649 (1993).Google Scholar
  57. 57.
    The Oxide Handbook, edited by G.V. Samsonov (Plenum Press, New York, 1981).Google Scholar
  58. 58.
    R. Strümpler, J. Appl. Phys., 80(11), 6091 (1996).Google Scholar
  59. 59.
    R. Strümpler, R. Loitzl, and L. Ritzer, European Patent 0 696 036 A1 (July 12, 1995).Google Scholar
  60. 60.
    S. Littlewood and B.F.N. Briggs, J. Phys. D: Appl. Phys., 11, 1457–62 (1978).Google Scholar
  61. 61.
    K.-H. Möbius in Elektrisch leitende Kunststoffe, edited by H.J. Mair and S. Roth (Carl Hanser, Munich, 1989) p. 59.Google Scholar
  62. 62.
    D.M. Bigg and D.E. Stutz, Polym. Comp., 4, 40 (1983).Google Scholar
  63. 63.
    W.F. Verhelst, K.G. Wolthuis, A. Voet, P. Ehrburger, and J.B. Donnet, Rubber Chem. and Techn., 50, 735–46 (1977).Google Scholar
  64. 64.
    R.G. Gilg in Elektrisch leitende Kunststoffe, edited by H.J. Mair and S. Roth (Carl Hanser Verlag, München, 1989), p. 21.Google Scholar
  65. 65.
    C.A. Randall, D.V. Miller, J.H. Adair, and A.S. Bhalla, J. Mater. Res., 8, 899 (1993).Google Scholar
  66. 66.
    Y.-S. Ho and P. Schoen, J. Mater. Res., 11, 469 (1996).Google Scholar
  67. 67.
    V.E. Gul and M.G. Golubeva, Koll. Zh., 28, 62 (1967).Google Scholar
  68. 68.
    V.E. Gul and M.G. Golubeva, Koll. Zh., 30, 13 (1968).Google Scholar
  69. 69.
    S. Jin, R.C. Sherwood, J.J. Mottine, T.H. Tiefel, R.L. Opila, and J.A. Fulton, J. Appl. Phys., 64, 6008 (1980).Google Scholar
  70. 70.
    S. Jin, T.H. Tiefel, L.-H. Chen, and D.W. Dahringer, IEEE Trans. on Components, Hybrids, and Manufact. Techn., CHMT-16, 972 (1993).Google Scholar
  71. 71.
    R.S. Perkins, A. Rüegg, M. Fischer, P. Streit, and A. Menth, IEEE Trans. on Components, Hybrids, and Manufact. Techn, CHMT-5(2) (1982).Google Scholar
  72. 72.
    F. Greuter and R. Strümpler, European Patent 0 649 150 B1 (1994).Google Scholar
  73. 73.
    J. Feinleib and W. Paul, Phys. Rev., 155, 841 (1967).Google Scholar
  74. 74.
    D.M. Moffatt, J.P. Runt, A. Halliyal, and R.E. Newnham, J. Mat. Sci., 24, 609 (1989).Google Scholar
  75. 75.
    J. Pedulla and P. Malinaric in EOS/EOD Symp. Proc., (1981) 49–56.Google Scholar
  76. 76.
    Adv. in Varistor Tech., Ceramic Transactions 3, edited by L.M. Levinson (1989).Google Scholar
  77. 77.
    R. Strümpler, P. Kluge-Weiss, and F. Greuter, Adv. Sci. Technology 10, Int. Mat. and Syst., edited by P. Vincenzini (Techna S.r.I., Faenza, Italy, 1995) p. 15.Google Scholar
  78. 78.
    J. Glatz-Reichenbach, B. Meyer, R. Strümpler, P. Kluge-Weiss, and F. Greuter, J. Mat. Sci., 31, 5941 (1996).Google Scholar
  79. 79.
    B. Miller, J. Appl. Polymer Sci., 10, 217–228 (1966).Google Scholar
  80. 80.
    V.E. Gul, L.Z. Shenfil, and G.K. Melnikova, Soviet Plastics, 3, 68–70 (1960).Google Scholar
  81. 81.
    D. Adolf and J.E. Martin, J. of Composite Materials, 30(1), 13 (1996).Google Scholar
  82. 82.
    R. Strümpler, G. Maidorn, A. Garbin, and F. Greuter, Polymers and Polymer Composites, 4, 299–304 (1996).Google Scholar
  83. 83.
    F. Carmona, R. Canet, and P. Delhaes, J. Appl. Phys., 61, 2550 (1987).Google Scholar
  84. 84.
    S. Yoshikawa, T. Ota, and R. Newnham, J. Am. Ceram. Soc., 73, 263–267 (1990).Google Scholar
  85. 85.
    P.K. Pramanik, D. Khastagir, and T.N. Saha, J. Mat. Sci., 28, 3539–3546 (1993).Google Scholar
  86. 86.
    G. Pearson, US Patent 2,258,958 (Oct. 14, 1941).Google Scholar
  87. 87.
    E. Frydman, UK Patent Spec. 604 695 I 718 14S (July 8, 1948).Google Scholar
  88. 88.
    F. Kohler, US Patent 3,243,753 I 3/29/66 (Mar. 29, 1966).Google Scholar
  89. 89.
    K. Ohe and Y. Natio, Jap. J. Appl. Phys., 10, 99–108 (1971).Google Scholar
  90. 90.
    J. Meyer, Polymer Eng. and Sci., 13, 462–468 (1973).Google Scholar
  91. 91.
    A. Voet, Rubber Chemistry and Technology, 54, 42–50 (1980).Google Scholar
  92. 92.
    K.A. Hu, J. Runt, A. Safari, and R.E. Newnham, Phase Transitions, 7, 1–4 (1986).Google Scholar
  93. 93.
    T.R. Shrout, D. Moffatt, and W. Huebner, J. Mat. Sci., 26, 145–154 (1991).Google Scholar
  94. 94.
    J. Glatz-Reichenbach, F. Greuter, J. Skindhøj, and R. Strümpler, Proc. of 5th Int. Conf. on Comp. Eng. (ICCE/5), July 5–11, 1998, edited by D. Hui, p. 321 (1998).Google Scholar
  95. 95.
    M.B. Heaney, Appl. Phys. Lett., 69, 2602 (1996).Google Scholar
  96. 96.
    J. Skindhøj, J. Glatz-Reichenbach, and R. Strümpler, IEEE Trans. PWRD, 13, 489–94 (1998).Google Scholar
  97. 97.
    J. Glatz-Reichenbach, J. Skindhùj, and R. Strümpler, Proc. of 11th Int. Conf. on Comp. Mater., vol. 5 (ICCM-11), Gold Coast, Australia, July 14–18, 1997, edited by M.L. Scott (Woodhead Publ., 1997) pp. 749–758.Google Scholar
  98. 98.
    V.E. Gul, L.Z. Shenfil, G.K. Melnikova, and A.S. Poluden, Soviet Plastics, 7, 60–62 (1966).Google Scholar
  99. 99.
    J. Meyer, Polymer Eng. and Sci., 14, 706 (1974).Google Scholar
  100. 100.
    H. Wagar, in Physical Design of Electronic Systems, vol. 3 (Prentice Hall, Englewood Cliffs, N.J., 1971).Google Scholar
  101. 101.
    W.J. Lackey, D.P. Stinton, G.A. Cerny, A.C. Schaffhauser, and L.L. Fehrenbacher, Adv. Ceram. Mat., 2, 24–30 (1987).Google Scholar
  102. 102.
    J. Delmonte, Metal/Polymer Composites (Van Nostrand, New York, 1998) p. 173.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • R. stru¨mpler
    • 1
  • J. Glatz-Reichenbach
    • 1
  1. 1.ABB Corporate Research Ltd.Baden-Da¨ttwilSwitzerland

Personalised recommendations