Reliable Computing

, Volume 6, Issue 4, pp 429–438 | Cite as

Hybrid Rational Function Approximation and Its Accuracy Analysis

  • Hiroshi Kai
  • Matu-Tarow Noda


We propose a rational function approximation method combining numeric and symbolic computations. Given functions or data are first interpolated by a rational function, i.e. the ratio of polynomials. Undesired poles appearing in the rational interpolant are removed by an approximate-GCD method. We call the rational approximation a Hybrid Rational Function Approximation and abbreviate it as HRFA. In this paper we give a short survey of the HRFA and then discuss its accuracy analysis by using the approximate-GCD proposed by Pan.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berrut, J.-P.: Rational Functions for Guaranteed and Experimentally Well-Conditioned Global Interpolation, Comput. Math. Applic. 15 (1988), pp. 1-16.Google Scholar
  2. 2.
    Berrut, J.-P. and Mittelmann, H. D.: Lebesgue Constant Minimizing Linear Rational Interpolation of Continuous Function over the Interval, Comput. Math. Applic. 33 (1997), pp. 77-86.Google Scholar
  3. 3.
    Braess, D.: Nonlinear Approximation Theory, Springer-Verlag, 1986.Google Scholar
  4. 4.
    Corless, R. M., Gianni, P. M., Trager, B. M., and Watt, S. M.: The Singular Value Decomposition for Polynomial Systems, in: Levelt, A. H. M. (ed.), ISSAC'95, 1995, pp. 195-207.Google Scholar
  5. 5.
    Cuyt, A. and Wuytack, L.: Nonlinear Methods in Numerical Analysis, 1987.Google Scholar
  6. 6.
    Hribernig, V. and Stetter, H. J.: Detection and Validation of Clusters of Polynomial Zeros, J. Symb. Comp. 24(6) (1997), pp. 667-681.Google Scholar
  7. 7.
    Kai, H. and Noda, M. T.: Approximate-GCD and Padé Approximation, in: Shi, H. and Kobayashi, H. (eds), Proceedings of Asian Symposium on Computer Mathematics, 1995, pp. 81-89.Google Scholar
  8. 8.
    Kai, H. and Noda, M. T.: Cauchy Principal Value Integral Using Hybrid Integral, SIGSAM Bulletin 31(3) (1997), pp. 37-38.Google Scholar
  9. 9.
    Kai, H. and Noda, M. T.: Hybrid Computation of Cauchy-Type Singular Integral Equations, SIGSAM Bulletin 32(2) (1998), pp. 59-60.Google Scholar
  10. 10.
    Kai, H. and Noda, M. T.: Accuracy Analysis of Hybrid Rational Interpolation, in: Proceedings of IMACS ACA'98, Electronic Proceedings,, 1998, pp. 1-8.Google Scholar
  11. 11.
    Kai, H. and Noda, M. T.: Hybrid Computation of Bivariate Rational Interpolation, in: International Symposium on Symbolic and Algebraic Computation, poster session, 1999.Google Scholar
  12. 12.
    Karmarkar, N. and Lakshman, Y. N.: Approximate Polynomial Greatest Common Divisors and Nearest Singular Polynomials, in: Lakshman, Y. N. (ed.), ISSAC'96, 1996, pp. 35-39.Google Scholar
  13. 13.
    Noda, M. T. and Miyahiro, E.: A Hybrid Approach for the Integration of a Rational Function, J. CAM 40 (1992), pp. 259-268.Google Scholar
  14. 14.
    Noda, M. T., Miyahiro, E., and Kai, H.: Hybrid Rational Function Approximation and Its Use in the Hybrid Integration, in: Vichnevetsky, R., Knight, D., and Richter, G. (eds), Advances in Computer Methods for Partial Differential Equations VII, IMACS, 1992, pp. 565-571.Google Scholar
  15. 15.
    Ochi, M., Noda, M. T., and Sasaki, T.: Approximate Greatest Common Divisor of Multivariate Polynomials and Its Application to Ill-Conditioned Systems of Algebraic Equations, J. Information Processing 14(3) (1991).Google Scholar
  16. 16.
    Pan, V. Y.: Computation of Approximate Polynomial GCDs and an Extensions, Accepted by Information and Computation, in: Proc. 9th Annual ACM-SIAM Symp. on Discrete Algorithms, ACM Press, New York and SIAM Publications, Philadelphia, 1998, pp. 68-77.Google Scholar
  17. 17.
    Rice, J. R.: The Approximation of Functions II, Addison-Wesley, 1969, pp. 76-122.Google Scholar
  18. 18.
    Rivlin, T. J.: An Introduction to the Approximation of Functions, Blaisdell, 1969, pp. 120-141.Google Scholar
  19. 19.
    Sasaki, T. and Noda, M. T.: Approximate Square-Free Decomposition and Root-Finding of Ill-Conditioned Algebraic Equations, J. Inf. Proc. 12 (1989), pp. 159-168.Google Scholar
  20. 20.
    Schönhage, A.: Quasi-GCD Computations, J. Complexity 1 (1985), pp. 118-137.Google Scholar
  21. 21.
    Sederberg, T. W. and Chang, G. Z.: Best Linear Common Divisors for Approximate Degree Reduction, Computer-Aided Design 25 (1993), pp. 163-168.Google Scholar
  22. 22.
    Van Barel, M. and Bultheel, A.: A New Approach to the Rational Interpolation Problem, J. Comp. Appl. Math. 32 (1990), pp. 281-289.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Hiroshi Kai
    • 1
  • Matu-Tarow Noda
    • 2
  1. 1.Department of Computer Science, Faculty of EngineeringEhime UniversityMatsuyamaJapan
  2. 2.Department of Computer Science, Faculty of EngineeringEhime UniversityMatsuyamaJapan

Personalised recommendations