Journal of Electroceramics

, Volume 5, Issue 2, pp 111–125

Ionic Conductor Composites: Theory and Materials

  • P. Knauth
Article

Abstract

The main theoretical concepts on ionic conduction at interfaces, especially the space charge layer model, are summarized in the first part of this review: ion trapping or redistribution leads to charge carrier accumulation, depletion or inversion and, consequently, to conductivity changes in composite materials. Experimental confirmations of the space charge layer model and the complementary percolation model are discussed. Major developments of ionic conductor composite materials over the last 25 years are presented in the second part, including lithium and other alkaline ion conductors, copper and silver ion conductors, di- and trivalent cation and anion conductors, glass and polymer composites. Some future trends and research needs are indicated in conclusion.

solid state ionics interfaces space charge model percolation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F.A. Kröger, The Chemistry of Imperfect Solids 2nd edition (North-Holland, Amsterdam, 1974).Google Scholar
  2. 2.
    J. Maier, Prog. Solid St. Chem., 23, 171 (1995).Google Scholar
  3. 3.
    C.C. Liang, J. Electrochem. Soc., 120, 1289 (1973).Google Scholar
  4. 4.
    J.B. Wagner, in High Conductivity Solid Ionic Conductors T. Takahashi, ed. (World Scientific, Singapore, 1989).Google Scholar
  5. 5.
    G. Gouy, J. Chim. Phys., 29, 145 (1903).Google Scholar
  6. 6.
    J.W. Verwey and J.Th.G. Overbeek, Theory of the Stability of Lyophobic Colloids (Elsevier, New York, 1948).Google Scholar
  7. 7.
    K. Lehovec, J. Chem. Phys., 21, 1123 (1953).Google Scholar
  8. 8.
    C. Wagner, J. Phys. Chem. Solids, 33, 1051 (1972).Google Scholar
  9. 9.
    T. Jow and J.B. Wagner, J. Electrochem. Soc., 126, 1963 (1979).Google Scholar
  10. 10.
    J. Maier, J. Phys. Chem. Solids, 46, 309 (1985).Google Scholar
  11. 11.
    J. Maier, J. Electrochem. Soc., 134, 1524 (1987).Google Scholar
  12. 12.
    R.C. Agrawal and R.K. Gupta, J. Mater. Sci., 34, 1131 (1999).Google Scholar
  13. 13.
    A. Atkinson, Solid State Ionics, 28-30, 1377 (1988).Google Scholar
  14. 14.
    B.J. Wuensch and H.L. Tuller, J. Phys. Chem. Sol., 55, 975 (1994).Google Scholar
  15. 15.
    M. Aoki, Y.-M. Chiang, I. Kosacki, J.-R. Lee, H.L. Tuller, and Y. Liu, J. Am. Ceram. Soc., 79, 1169 (1996).Google Scholar
  16. 16.
    J.A.S. Ikeda and Y.-M. Chiang, J. Am. Ceram. Soc., 76, 2437 and 2447 (1993).Google Scholar
  17. 17.
    D.A. Blom and Y.-M. Chiang, Mat. Res. Soc. Symp. Proc., 458, p. 127 (Materials Research Society, 1997).Google Scholar
  18. 18.
    K. Shahi and J.B. Wagner, Solid State Ionics, 3/4, 295 (1981).Google Scholar
  19. 19.
    U. Lauer and J. Maier, Ber. Bunsenges. Phys. Chem., 96, 111 (1992).Google Scholar
  20. 20.
    U. Lauer and J. Maier, Solid State Ionics, 51, 209 (1992).Google Scholar
  21. 21.
    S. Gupka, S. Patnaik, and K. Shahi, Solid State Ionics, 31, 5 (1988).Google Scholar
  22. 22.
    J. Maier, Solid State Ionics, 23, 59 (1987).Google Scholar
  23. 23.
    J. Maier, Phys. Stat. Sol. (a), 112, 115 (1989).Google Scholar
  24. 24.
    J. Maier, S. Prill, and B. Reichert, Solid State Ionics, 28-30, 1465 (1988).Google Scholar
  25. 25.
    J. Maier, Solid State Ionics, 18/19, 1141 (1986).Google Scholar
  26. 26.
    N.J. Dudney, J. Amer. Ceram. Soc., 70, 65 (1987).Google Scholar
  27. 27.
    D. Lubben and F.A. Modine, J. Appl. Phys., 80, 5150 (1996).Google Scholar
  28. 28.
    J.B. Phipps and D.H. Whitmore, Solid State Ionics, 9/10, 123 (1983).Google Scholar
  29. 29.
    S. Jiang and J.B. Wagner, J. Phys. Chem. Solids, 56, 1101 (1995).Google Scholar
  30. 30.
    J.-S. Lee, St. Adams, and J. Maier, Solid State Ionics, in press.Google Scholar
  31. 31.
    J. Maier and B. Reichert, Ber. Bunsenges. Phys. Chem., 90, 666 (1986).Google Scholar
  32. 32.
    J. Maier, Ber. Bunsenges. Phys. Chem., 88, 1057 (1984).Google Scholar
  33. 33.
    M. Nagai and T. Nishino, Solid State Ionics, 117, 317 (1999).Google Scholar
  34. 34.
    G. Simkovich and C. Wagner, J. Catalysis, 1, 521 (1962).Google Scholar
  35. 35.
    P. Murugaraj and J. Maier, Solid State Ionics, 32/33, 993 (1989).Google Scholar
  36. 36.
    N. Aoyama, Y. Yamashita, A. Abe, and N. Takezawa, Phys. Chem. Chem. Phys., 1, 3365 (1999).Google Scholar
  37. 37.
    M. Vennekamp and J. Janek, Solid State Ionics, 118, 43 (1999).Google Scholar
  38. 38.
    A.M. Stoneham, E. Wade, and J.A. Kilner, Mater. Res. Bull., 14, 661 (1979).Google Scholar
  39. 39.
    J.C. Wang and N.J. Dudney, Solid State Ionics, 18/19, 112 (1986).Google Scholar
  40. 40.
    N.F. Uvarov, V.P. Isupov, V. Sharma, and A.K. Shukla, Solid State Ionics, 51, 41 (1992).Google Scholar
  41. 41.
    A.K. Bhattacharyya, T.R. Middya, and S. Tarafdar, Ionics, 2, 346 (1996).Google Scholar
  42. 42.
    B. Nettelblad, B. Zhu, and B.-E. Mellander, Phys. Rev. B, 55, 6232 (1997).Google Scholar
  43. 43.
    A. Bunde, W. Dieterich, and H.E. Roman, Phys. Rev. B, 34, 3439 (1986).Google Scholar
  44. 44.
    A. Bunde, W. Dieterich, and H.E. Roman, Solid State Ionics, 18/19, 147 (1986).Google Scholar
  45. 45.
    A. Bunde, Solid State Ionics, 28-30, 34 (1988).Google Scholar
  46. 46.
    H.E. Roman and M. Yussouf, Phys. Rev. B, 36, 7285 (1987).Google Scholar
  47. 47.
    C. DeW. Van Siclen, Phys. Rev. E, 59, 2804 (1999).Google Scholar
  48. 48.
    J.-M. Debierre, P. Knauth, and G. Albinet, Appl. Phys. Lett., 71, 1335-1337 (1997).Google Scholar
  49. 49.
    P. Knauth, G. Albinet, and J.-M. Debierre, Solid State Ionics, 121, 101 (1999).Google Scholar
  50. 50.
    C. Lambert, L. Memoli, J.-M. Debierre, P. Knauth, and G. Albinet, Ionics, 5, 200 (1999).Google Scholar
  51. 51.
    L. Tortet, J.-R. Gavarri, J. Musso, G. Nihoul, J.-P. Clerc, A.N. Lagarkov, and A.K. Sarychev, Phys. Rev. B, 58, 5390 (1998).Google Scholar
  52. 52.
    R. Blender and W. Dieterich, Solid State Ionics, 28-30, 82 (1988).Google Scholar
  53. 53.
    M. Nagai and T. Nishino, J. Electrochem. Soc., 138, L49 (1991).Google Scholar
  54. 54.
    M. Nagai and T. Nishino, Solid State Ionics, 53-56, 63 (1992).Google Scholar
  55. 55.
    M. Nagai and T. Nishino, Key Engineering Materials, 111-112, 281 (1995).Google Scholar
  56. 56.
    M. Nagai and T. Nishino, Solid State Ionics, 79, 319 (1995).Google Scholar
  57. 57.
    G. Rog, A. Kielski, A. Kozlowska-Rog, and M. Bucko, Ceramics International, 24, 91 (1998).Google Scholar
  58. 58.
    J. Köhler, Y. Kobayashi, N. Imanaka, and G. Adachi, Solid State Ionics, 113-115, 553 (1998).Google Scholar
  59. 59.
    Y. Saito, K. Hariharan, and J. Maier, Solid State Phenomena, 39-40, 235 (1994).Google Scholar
  60. 60.
    K. Hariharan and J. Maier, J. Electrochem. Soc., 142, 3469 (1995).Google Scholar
  61. 61.
    B. Zhu, Z.H. Lai, and B.-E. Mellander, Solid State Ionics, 70/71, 125 (1994).Google Scholar
  62. 62.
    A. Kumar and K. Shahi, Mater. Res. Bull., 31, 877 (1996).Google Scholar
  63. 63.
    M. Tatsumisago, T. Saito, and T. Minami, Solid State Ionics, 70/71, 394 (1994).Google Scholar
  64. 64.
    St. Adams, K. Hariharan, and J. Maier, Solid State Ionics, 86-88, 503 (1996).Google Scholar
  65. 65.
    U. Lauer and J. Maier, J. Electrochem. Soc., 139, 1472 (1992).Google Scholar
  66. 66.
    G. Ardel, D. Golodnitsky, E. Peled, Y. Wang, G. Wang, S. Bajue, and S. Greenbaum, Solid State Ionics, 113-115, 477 (1998).Google Scholar
  67. 67.
    A. Lunden, B.-E. Mellander, A. Bengtzelius, H. Ljungmark, and R. Tärneberg, Solid State Ionics, 18/19, 514 (1986).Google Scholar
  68. 68.
    A.C. Khandkar and J.B. Wagner, Solid State Ionics, 18/19, 1100 (1986).Google Scholar
  69. 69.
    A. Khandkar, V.B. Tare, A. Navrotsky, and J.B. Wagner, J. Electrochem. Soc., 131, 2683 (1984).Google Scholar
  70. 70.
    J. Rogez, A. Garnier, and P. Knauth, J. Phys. Chem. Solids, in press.Google Scholar
  71. 71.
    S. Pack, B. Owens, and J.B. Wagner, J. Electrochem. Soc., 127, 2177 (1980).Google Scholar
  72. 72.
    F.W. Poulsen, N.H. Anderson, B. Kindl, and J. Schoonman, Solid State Ionics, 9-10, 119 (1983).Google Scholar
  73. 73.
    O. Yamamoto, in Solid State Electrochemistry P.G. Bruce, ed. (Cambridge University Press, 1995).Google Scholar
  74. 74.
    B.C. Tofield and D.E. Williams, Solid State Ionics, 9/10, 1299 (1983).Google Scholar
  75. 75.
    B. Zhu, Z.H. Lai, and B.-E. Mellander, Solid State Ionics, 70/71, 125 (1994).Google Scholar
  76. 76.
    M.A.K.L. Dissanayake and B.-E. Mellander, Solid State Ionics, 21, 279 (1986).Google Scholar
  77. 77.
    K. Singh and S.S. Bhoga, Solid State Ionics, 40/41, 1025 (1990).Google Scholar
  78. 78.
    Q.G. Liu and W.L. Worrell, Solid State Ionics, 18/19, 524 (1986).Google Scholar
  79. 79.
    M.M.E. Jacob, S. Rajendran, R. Gangadharan, M.S. Michael, and S.R.S. Prabaharan, Solid State Ionics, 86-88, 595 (1996).Google Scholar
  80. 80.
    M. Nagai and T. Nishino, Solid State Ionics, 70/71, 96 (1994).Google Scholar
  81. 81.
    U. Guth, S. Brosda, B. Löscher, A. Simmich, P. Schmidt, and H.-H. Möbius, Mater. Sci. Forum, 76, 137 (1991).Google Scholar
  82. 82.
    S. Brosda, H.J.M. Bouwmeester, and U. Guth, Ionics, 2, 323 (1996).Google Scholar
  83. 83.
    Y. Saito, J. Mayne, K. Ado, Y. Yamamoto, and O. Nakamura, Solid State Ionics, 40/41, 72 (1990).Google Scholar
  84. 84.
    T. Takeuchi, K. Ado, Y. Saito, M. Tabuchi, C. Masquelier, and O. Nakamura, Solid State Ionics, 79, 325 (1995).Google Scholar
  85. 85.
    T. Takeuchi, K. Ado, Y. Saito, M. Tabuchi, H. Kageyama, and O. Nakamura, Solid State Ionics, 89, 345 (1996).Google Scholar
  86. 86.
    T. Takeuchi, K. Ado, Y. Saito, M. Tabuchi, H. Kageyama, and O. Nakamura, Solid State Ionics, 86-88, 565 (1996).Google Scholar
  87. 87.
    G.V. Lavrova, V.G. Ponomareva, and N.F. Uvarov, Solid State Ionics, in press.Google Scholar
  88. 88.
    N.F. Uvarov, P. Vanek, Yu.I. Yuzyuk, V. Zelezny, V. Studnicka, B.B. Bokhonov, V.E. Dulepov, and J. Petzelt, Solid State Ionics, 90, 201 (1996).Google Scholar
  89. 89.
    J. Maier, Solid State Ionics, 86-88, 55 (1996).Google Scholar
  90. 90.
    K. Shahi and J.B. Wagner, J. Electrochem. Soc., 128, 6 (1981).Google Scholar
  91. 91.
    N.F. Uvarov, E.F. Hairetdinov, B.B. Bokhonov, and N.B. Bratel, Solid State Ionics, 86-88, 573 (1996).Google Scholar
  92. 92.
    M. Nagai and T. Nishino, J. Am. Ceram. Soc., 76, 1057 (1993).Google Scholar
  93. 93.
    R.C. Agrawal, M.L. Verma, and R.K. Gupta, J. Phys. D, 31, 2854 (1998).Google Scholar
  94. 94.
    A. Chandra, A. Spangenberg, and J. Maier, J. Electroceramics, 3, 45 (1999).Google Scholar
  95. 95.
    K. Tennakone, G.R.R.A. Kumara, I.R.M. Kottegoda, K.G.U. Wijayantha, and V.P.S. Perera, J. Phys. D: Appl. Phys., 31, 1492 (1998).Google Scholar
  96. 96.
    M.-A. Desvals and P. Knauth, J. Phys. Chem. Solids, 58, 319-325 (1997).Google Scholar
  97. 97.
    A. Becquart, F. Cabané, and P. Knauth, J. Electroceramics, 1, 173-177 (1997).Google Scholar
  98. 98.
    P. Knauth, G. Albinet, and J.-M. Debierre, Ber. Bunsenges. Phys. Chem., 102, 945-952 (1998).Google Scholar
  99. 99.
    S. Fujitsu, K. Koumoto, and H. Yanagida, Solid State Ionics, 18/19, 1146 (1986).Google Scholar
  100. 100.
    S.L. Finch and R.V. Kumar, Proc. 6th Euroconference on Solid State Ionics (1999) p. 59.Google Scholar
  101. 101.
    J. Köhler, N. Imanaka, and G. Adachi, Solid State Ionics, 122, 173 (1999).Google Scholar
  102. 102.
    M. Nagai, K. Ogawa, and T. Nishino, J. Am. Ceram. Soc., 77, 2470 (1994).Google Scholar
  103. 103.
    A.J. Feighery and J.T.S. Irvine, Solid State Ionics, 121, 209 (1999).Google Scholar
  104. 104.
    M. Mori, T. Abe, and H. Itoh, Solid State Ionics, 74, 157 (1994).Google Scholar
  105. 105.
    M. Tatsumisago, Y. Shinkuma, and T. Minami, Nature, 354, 217 (1991).Google Scholar
  106. 106.
    S. Skaarup, K. West, P.M. Julian, and D.M. Thomas, Solid State Ionics, 40/41, 1021 (1990).Google Scholar
  107. 107.
    F. Croce, S. Passerini, A. Selvaggi, and B. Scrosati, Solid State Ionics, 40/41, 375 (1990).Google Scholar
  108. 108.
    J. Plocharski and W. Wieczorek, Solid State Ionics, 28-30, 979 (1988).Google Scholar
  109. 109.
    K.M. Nairn, A.S. Best, P.J. Newman, D.R. MacFarlane, and M. Forsyth, Solid State Ionics, 121, 115 (1999).Google Scholar
  110. 110.
    L. Tortet, J.-R. Gavarri, J. Musso, G. Nihoul, and A.K. Sarychev, J. Solid State Chem., 141, 392 (1998).Google Scholar
  111. 111.
    F. Croce, G.B. Appetecchi, L. Persi, and B. Scrosati, Nature, 394, 456 (1998).Google Scholar
  112. 112.
    T.J. Mazanec, Solid State Ionics, 70/71, 11 (1994).Google Scholar
  113. 113.
    K. Huang, M. Schroeder, and J.B. Goodenough, Electrochem. Solid State Lett., 2, 375 (1999).Google Scholar
  114. 114.
    J.E. ten Elshof, N.Q. Nguyen, M.W. den Otter, and H.J.M. Bouwmeester, J. Electrochem. Soc., 144, 4361 (1997).Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • P. Knauth
    • 1
  1. 1.Laboratoire de Physico-Chimie des Mate´riauxUniversite´ de ProvenceMarseille Cedex 3France

Personalised recommendations