The Complex Process of Converting Tools into Mathematical Instruments: The Case of Calculators

  • Dominique Guin
  • Luc Trouche
Article

Abstract

Transforming any tool into a mathematical instrument for students involves a complex ‘instrumentation’ process and does not necessarily lead to better mathematical understanding. Analysis of the constraints and potential of the artefact are necessary in order to point out the mathematical knowledge involved in using a calculator. Results of this analysis have an influence on the design of problem situations. Observations of students using graphic and symbolic calculators were analysed and categorised into profiles, illustrating that transforming the calculator into an efficient mathematical instrument varies from student to student, a factor which has to be included in the teaching process.

instrumentation process instrumental genesis graphic and symbolic calculators student behaviour conceptualisation process limits classroom practice 

REFERENCES

  1. Artigue, M. (1995). Une approche didactique de l'intégration des EIAO. In D. Guin, J.-F. Nicaud and D. Py (Eds), Environnements Interactifs d'Apprentissage avec Ordinateur (pp. 17-29). Paris: Eyrolles.Google Scholar
  2. Artigue, M. (1997). Computer environments and learning theories in mathematics education. In B. Barzel (Ed.), Teaching Mathematics with Derive and the TI-92, Proceedings of the International Derive and TI-92 Conference (pp. 1-17). Bonn.Google Scholar
  3. Artigue, M., Defouad, B., Dupérier, M., Juge, G. and Lagrange, J. B. (1997). L'intégration de calculatrices complexes à l'enseignement scientifique au lycée. Research Report, Cahier de Didirem (3), Université Paris VII.Google Scholar
  4. Artigue, M. (1998). Teacher training as a key issue for the integration of computer technologies. In D. Tinsley and D. C. Johnson (Eds), Information and Communications Technologies in School Mathematics, Proceedings of the IFIP WG 3.1 Working Conference (pp. 121-129). Villard de Lans, Chapman & Hall.Google Scholar
  5. Balacheff, N. (1993). Artificial intelligence and real teaching. In C. Keitel and K. Ruthven (Eds), Learning from Computers: Mathematics Education and Technology, Vol. 121, Nato, Serie F (pp. 131-157). Springer-Verlag.Google Scholar
  6. Dorfler, W. (1993). Computer use and views of the mind. In C. Keitel and K. Ruthven (Eds), Learning from Computers: Mathematics Education and Technology, Vol. 121, Nato, Serie F (pp. 159-186). Springer-Verlag.Google Scholar
  7. Dreyfus, T. (1993). Didactic design of computer-based learning environments. In C. Keitel and K. Ruthven (Eds), Learning from Computers: Mathematics Education and Technology, Vol. 121, Nato Serie F (pp. 101-130). Springer-Verlag.Google Scholar
  8. Dubinsky, E. and Tall, D. (1991). Advanced mathematical thinking and the computer. In D. Tall (Ed.), Advanced Mathematical Thinking (pp. 231-250). Dordrecht: Kluwer Academic Publishers.Google Scholar
  9. Duval, R. (1996). Quel cognitif retenir en didactique? Recherches en Didactique des Mathématiques 16(3): 349-382.Google Scholar
  10. Goldenberg, E. (1987). Believing is seeing: How preconceptions influence the perception of graphs, Proceedings of the 11th Conference of the International Group for the Psychology of Mathematics Education, Montreal, 1, pp. 197-204.Google Scholar
  11. Guin, D. and Delgoulet J. (1996). Etude des modes d'appropriation de calculatrices graphiques et symboliques dans une classe de Seconde. IREM de Montpellier.Google Scholar
  12. Guin, D. (1999). Calculatrices symboliques et géométriques dans l'enseignement des Mathématiques, Proceedings of the European Conference. Université Montpellier II, IREM de Montpellier.Google Scholar
  13. Hillel, J. (1993). Computer algebra systems as cognitive technologies: Implication for the practice of mathematics education. In C. Keitel and K. Ruthven (Eds), Learning from Computers: Mathematics Education and Technology, Vol. 121, Nato Serie F (pp. 18-48). Springer-Verlag.Google Scholar
  14. Houdé O. (1995). Rationalité, développement et inhibition. Un nouveau cadre d’analyse. Paris: PUF.Google Scholar
  15. Keitel, C. and Ruthven, K. Learning from Computers: Mathematics Education and Technology, Vol. 121, Nato Serie F. Springer-Verlag.Google Scholar
  16. Monaghan, J. (1997). Teaching and learning in a Computer algebra environment, The International Journal of Computer Algebra in Education 4(3): 207-220.Google Scholar
  17. Noss, R. and Hoyles, C. (1996). Windows on Mathematical Meanings (pp. 153-166). Dordrecht: Kluwer Academic Publishers.Google Scholar
  18. Ruthven, K. and Chaplin, D. (1997). The calculator as a cognitive tool: Upper-primary pupils tackling a realistic number problem, International Journal of Computers for Mathematical Learning 2: 93-124.CrossRefGoogle Scholar
  19. Schwartz, B. and Dreyfus, T. (1995). New actions upon old objects: a new ontological perspective on functions, Educational Studies 29: 259-291.CrossRefGoogle Scholar
  20. Shoaf, M. M. (1997). Using the total power of the TI-92! From discovery explorations to complete lab reports, The International Journal of Computer Algebra in Education 4(3): 295-299.Google Scholar
  21. Trouche, L. and Guin, D. (1996). Seeing is reality: How graphic calculators may influence the conceptualisation of limits, Proceedings of the 20th Conference of the International Group for the Psychology of Mathematics Education (pp. 323-333), Valencia, 4.Google Scholar
  22. Trouche, L. (1996). A propos de l'apprentissage des limites de fonctions dans un environnement calculatrice: étude des rapports entre processus de conceptualisation et processus d'instrumentalisation. Doctoral Thesis, Montpellier II, IREM de Montpellier.Google Scholar
  23. Verillon, P. and Rabardel, P. (1995). Cognition and artifacts: A contribution to the study of thought in relation to instrumented activity, European Journal of Psychology in Education 9(3): 77-101.CrossRefGoogle Scholar
  24. Vygotsky, L. S. (1930/85). La méthode instrumentale en psychologie. In B. Schneuwly and J. P. Bronckart (Eds), Vygotsky aujourd'hui (pp. 39-47). Neûchatel: Delachaux et Niestlé.Google Scholar
  25. Vygotsky, L. S. (1962). Thought and Language. Cambridge, MA: MIT Press.Google Scholar
  26. Yerushalmy M. (1997). Reaching the unreachable: Technology and the semantics of asymptotes, International Journal of Computers for Mathematical Learning 2: 1-25.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Dominique Guin
    • 1
  • Luc Trouche
    • 1
  1. 1.Département de Mathématiques, E.R.E.S., Place Eugène BataillonUniversité Montpellier IIMontpellier Cedex 5France E-mail

Personalised recommendations