Plant Ecology

, Volume 146, Issue 1, pp 11–28

Classification of vegetational diversity in managed boreal forests in eastern Finland

  • Sari Pitkänen
Article

Abstract

Diversity of vegetation in managed forests is studied. A classification based on forest stand structure, the abundances of vegetation species and variations in these abundances is developed and diversity indices are calculated for the classes to describe the diversity of the vegetation within the classes. The classes were formed using detrended correspondence analysis (DCA), global nonmetric multidimensional scaling (GNMDS) and TWINSPAN classification. Discriminant analysis was used to determine the environmental variables differentiating between the classes, and Duncan's multiple range test was used to examine the ability of the diversity measures to distinguish the classes. Beta diversity was estimated with Økland's method based on DCA ordination of the sample plots. The results point to fertility and the successional stage of the stand as the main factors affecting species diversity, in addition to which soil type, the number of tree species, crown cover, basal area and certain variables describing the management of the stand were relevant to the classification. The most distinct diversity indices were the reciprocal of Simpson, Pielou's J' and species richness, while the highest alpha diversity was found in young stands with a low crown cover on herb-rich or mesic forest sites. Beta diversity was quite high, its highest values of all for the whole data being recorded along the fertility gradient.

Alph diversity Beta diversity Classification Discriminant analysis Ordination Stand structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afifi, A. A. & Clark, V. 1990. Computer-aided multivariate analysis. Second edition. Chapman & Hall, London, 505 pp.Google Scholar
  2. Alatalo, R. V. 1981. Problems on measurement of evenness in ecology. Oikos 37: 199–204.Google Scholar
  3. Attivill, P. M. 1994a. The disturbance of forest ecosystems: the ecological basis for conservative management. Forest Ecol. Manag. 63: 240–300.Google Scholar
  4. Attivill, P. M. 1994b. Ecological disturbance and the conservative management of eucalyptus forests in Australia. Forest Ecol. Manag. 63: 301–346.Google Scholar
  5. Austin, M. 1987. Models for the analysis of species, response to environmental gradients. Vegetatio 69: 30–45.Google Scholar
  6. Butterfield, R. P. 1995. Promoting biodiversity: advances in evaluating native species for reforestation. Forest Ecol. Manag. 75: 111–121.Google Scholar
  7. Cajander, A. K. 1909. Ñber Waldtypen. Acta Forestalia Fennica 1(1): 1–175.Google Scholar
  8. Camp, O. 1994. Critical elements of forest sustainability. Int. J. Ecoforestry 10(1): 7–10.Google Scholar
  9. Esseen, P. A., Ehnström, B., Ericson, L. & Sjöberg, K. 1992. Boreal forests – The focal habitats of Fennoscandia. In: Hansson, L. (ed.), Ecological principles of nature conservation. Applications in temperate and boreal environments. Elsevier applied science, 430 pp.Google Scholar
  10. Faith, D. P., Minchin, P. R. & Belbin, L. 1987. Compositional dissimilarity as a robust measure of ecological distance. Vegetatio 69: 57–68.Google Scholar
  11. Fernandez-Palacios, J. H. & de Nicolas, J. P. 1995. Altitudinal pattern of vegetation on Tenerife. J. Veg. Sci. 6: 183–190.Google Scholar
  12. Gauch, H. & Whittaker, R. H. 1981. Hierarchical classification of community data. J. Ecol. 69: 537–557.Google Scholar
  13. Halpern, C. B. & Spies, T. A. 1995. Plant species diversity in natural and managed forests of the Pacific Northwest. Ecol. App. 5(4): 913–934.Google Scholar
  14. Hill, M. O. 1973. Diversity and evenness: a unifying notation and its consequences. Ecology 54(2): 427–432.Google Scholar
  15. Hill, M. O. 1979a. DECORANA – A Fortran program for detrended correspondence analysis and reciprocal averaging. Cornell University, Ithaca, New York, 52 pp.Google Scholar
  16. Hill, M. O. 1979b. TWINSPAN – A Fortran program for arranging multivariate data in an ordered two-way table by classification of the individuals and attributes. Cornell University, Ithaca, New York 52 pp.Google Scholar
  17. Hotanen, J.-P. & Vasander, H. 1992. Eteläsuomalaisten metsäojitettujen turvemaiden kasvillisuuden numeerinen ryhmittely. Summary: Post-drainage development of vegetation in southern Finnish peatlands studied by numerical analysis. Suo 43(l): 1–10.Google Scholar
  18. Huston, M. A. 1994. Biological diversity. The coexistence of species on changing landscapes. Cambridge University Press, Cambridge, 681 pp.Google Scholar
  19. Kempton, R. A, & Taylor, L. R. 1976. Models and statistics for species diversity. Nature 262: 818–820.Google Scholar
  20. Kenkel, N. C. & Orloci, L. 1986. Applying metric and nonmetric multidimensional scaling to ecological studies: some new results. Ecology 67(4): 919–928.Google Scholar
  21. Korpela, L. & Reinikainen, A. 1996. Patterns of diversity in boreal mire margin vegetation. Tiivistelmä: Boreaalisen reunavaikutteisen suokasvillisuuden monimuotoisuuden analyysia. Suo 47(1): 17–28.Google Scholar
  22. Kuusipalo, J. 1985. An ecological study of upland forest site classification in southern Finland. Seloste: Ekologinen tutkimus Etelä-Suomen kangasmetsien kasvupaikkaluokituksesta. Acta Forestalia Fennica 192: 1–77.Google Scholar
  23. Lahti, T. & Väisänen, R. A. 1987. Ecological gradients of boreal forests in South Finland: an ordination test of Cajander' forest site type theory. Vegetatio 68: 145–156.Google Scholar
  24. Larsen, J. B. 1995. Ecological stability of forests and sustainable silviculture. Forest Ecol. Manag. 73: 85–96.Google Scholar
  25. Lindholm, T. & Vasander, H. 1987. Vegetation and stand development of mesic forest after prescribed burning. Silva Fennica 21(3): 259–278.Google Scholar
  26. Lindholm, T. & Tuominen, S. 1989. Vanhojen luonnonmetsien rakennetyypit eräillä etelä-boreaalisilla luonnonsuojelualueilla. Summary: The structure classes of southern boreal natural forests in some Finnish nature protection areas. In: Poikajärvi, H. Sepponen, P. & Varmola, M. (eds.), Tutkimus luonnonsuojelualueilla. Research activities on the nature conservation areas. Folia Forestalia 736: 46–52 (in Finnish with English summary).Google Scholar
  27. Metsäntutkimuslaitos 1985a. Valtakunnan metsien 8. inventointi. Pysyvien koealojen kenttätyön ohjeet. The Finnish Forest Research Institute, 79 pp.Google Scholar
  28. Metsäntutkimuslaitos 1985b. Valtakunnan metsien 8. inventointi. Biologien työohjeet VMI 8:n pysyvi¨koealoja varten. The Finnish Forest Research Institute, 42 pp.Google Scholar
  29. Minchin, P. 1987. An evaluation of the relative robustness of techniques of ecological ordination. Vegetatio 69: 89–107.Google Scholar
  30. Minchin, P. 1991. DECODA – Database for ecological community data. Notes on performing multidimensional scaling with DECODA and MDS. Australian National University, Canberra, 7 pp.Google Scholar
  31. Molinari, J. 1989. A calibrated index for the measurement of evenness. Oikos 56: 319–326.Google Scholar
  32. Nieppola, J. & Carleton, T. J. 1991. Relations between understorey vegetation, site productivity, and environmental factors in Pinus sylvestris L. stands in southern Finland. Vegetatio 93: 57–72.Google Scholar
  33. Økland, R. H. 1986. Rescaling of ecological gradients. I. Calculation of ecological distance between vegetation stands by means of their floristic composition. Nordic J. Bot. 6: 651–660.Google Scholar
  34. Økland, R. H. 1990a. A phytoecological study of the mire Northern Kisselbergmosen, SE Norway. IH. Diversity and habitat niche relationships. Nordic J. Bot. 10: 191–220.Google Scholar
  35. Økland, R. H. 1990b. Vegetation ecology: theory, methods and applications with reference to Fennoscandia. Sommerfeltia Suppl. 1: 1–216.Google Scholar
  36. Økland, R. H. 1995. Persistence of vascular plants in a Norwegian boreal coniferous forests. Ecography 18: 3–14.Google Scholar
  37. Økland, R. H. & Bendiksen, E. 1985. The vegetation of the forest-alpine transition in the Grunningsdalen area, Telemark, S. Norway. Sommerfeltia 2, 224 pp.Google Scholar
  38. Økland, R. H. & Eilertsen, O. 1993. Vegetation-environment relationships of boreal coniferous forests in the Solhomfjell area, Gjerstad, S. Norway. Sommerfeltia 16, 254 pp.Google Scholar
  39. Økland, T. 1996. Vegetation-environment relationships of boreal spruce forests in ten monitoring reference areas in Norway. Sommerfeltia 22, 349 pp.Google Scholar
  40. Peet, R. K. 1974. The measurement of species diversity. Annu. Rev. Ecol. Syst. 5: 285–307.Google Scholar
  41. Pitkänen, S. 1997. Correlation between stand structure and ground vegetation: an analytical approach. Plant Ecol. 131: 109–126.Google Scholar
  42. Päivinen, R. 1987. Metsän inventoinnin suunnittelumalli. Summary: A planning model for forest inventory. Joensuun yliopiston luonnontieteellisiä julkaisuj a 11. University of Joensuu. Publ. Sci. 11: 179.Google Scholar
  43. Rescia, A. J., Schmitz, M. F., Martin de Agar, P., de Pablo, C. L., Atauri, J. A. & Pineda, F. D. 1994. Influence of landscape complexity and land management on woody plant diversity in northern Spain. J. Veg. Sci. 5: 505–516.Google Scholar
  44. Ter Braak, C. J. F. 1986. Interpreting a hierarchical classification with simple discriminant function: an ecological example. Data Anal. Inf. IV: 11–21.Google Scholar
  45. Ter Braak, C. J. F. 1987. The analysis of vegetation environment relationships by canonical correspondence analysis. Vegetatio 69: 69–77.Google Scholar
  46. Tonteri, T. 1994. Species richness of boreal understorey forest vegetation in relation to site type and successional factors. Annal. Zool. Fennici 31(1): 53–60.Google Scholar
  47. Tonteri, T., Hotanen, J.-P. & Kuusipalo, J. 1990. The Finnish forest site type approach: ordination and classification studies of mesic forest sites in southern Finland. Vegetatio 87: 85–98.Google Scholar
  48. Uuttera, J. & Maltamo, M. 1995. Impact of regeneration method on stand structure prior to first thinning. Comparative study North Karelia, Finland vs. Republic of Karelia, Russian Federation. Silva Fennica 29(4): 267–285.Google Scholar
  49. Uuttera, J., Maltamo, M. & Kuusela, K. 1996. Impact of forest management history on the state of forests in relation to natural forest succession. Comparative study North Karelia, Finland vs. Republic of Karelia, Russian Federation. For. Ecol. Manag. 83: 71–85.Google Scholar
  50. Uuttera, J., Maltamo, M. & Hotanen, J.-P. 1997. The structure of forest stands in virgin and managed peatlands: a comparison between Finnish and Russian Karelia. Forest Ecol. Manag. 96: 125–138.Google Scholar
  51. Wilson, M. V. & Shmida, A. 1984. Measuring beta diversity with presence-absence data. J. Ecol. 72: 1055–1064.Google Scholar
  52. Whittaker, R. H. 1972. Evolution and measurement of species diversity. Taxon 21(2/3): 213–251.Google Scholar
  53. Zopel, M. 1989. Secondary forest succession in Järviselja, South-Eastern Estonia: changes in field layer vegetation. Ann. Bot. Fennici 26: 171–182.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Sari Pitkänen
    • 1
  1. 1.University of Joensuu, Faculty of ForestryJoensuuFinland

Personalised recommendations