Plant Ecology

, Volume 145, Issue 1, pp 115–123

Seed predation and dispersal in relict Scots pine forests in southern Spain

  • Jorge Castro
  • José M. Gómez
  • Daniel García
  • Regino Zamora
  • José A. Hódar


For two years, the seed rain and magnitude of seed losses due to predation were evaluated in Scots pine forests in southern Spain. The Crossbill was the most important pre-dispersal predator, consuming more than 80% of ripening seeds. In addition, other birds, mainly Tits and Siskin, also consumed seeds just before seed dispersal, reaching values of 16 and 51% losses in 1996 and 1997, respectively. Seed rain was monitored in different microhabitats (under pine canopies, under shrubs and in open areas), and was most intense under the canopy of mother plants both years. Post-dispersal seed predators (rodents and birds) consumed up to 96% of seeds reaching the ground. Both pre- and post-dispersal seed predators preferentially harvested filled seeds. Post-dispersal predation was similarly intense in all microhabitats, so predators did not change the spatial distribution of the seed rain. These high predation rates were constant between years, localities and habitats (woodland and treeline). We hypothesize that this high rate of seed predation is a major factor limiting the regeneration of these relict populations of Scots pine in its southernmost limit.

Mediterranean high mountain Pinus sylvestris nevadensis Relict population Seed ecology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acherar, M., Lepart, J. & Debussche, M. 1984. La colonisation des friches par le pin d'Alep (Pinus halepensis Miller) en Languedoc méditerranéen. Acta Oecol. 5: 179–189.Google Scholar
  2. Arista, M. 1994. Supervivencia de las plántulas de Abies pinsapo boiss. en su hábitat natural. Anales Jard. Bot. Madrid 51: 193–198.Google Scholar
  3. Bartholomew, B. 1970. Bare zone between California shrub and grassland communities: the role of animals. Science 170: 1210–1212.Google Scholar
  4. Benkman, C. W. 1993. Adaptation to single resources and the evolution of Crossbill (Loxia) diversity. Ecol. Monog. 63: 305–325.Google Scholar
  5. Bennett, K. D. 1997. Ecology and evolution: a pace for life. Cambridge University Press, Cambridge.Google Scholar
  6. Bennett, K. D., Tzedakis, P. C. & Willis, K. J. 1991. Quaternary refugia of north European trees. J. Biog. 18: 103–115.Google Scholar
  7. Boratynski, A. 1991. Range of natural distribution. Pp. 19–30. In: Giertych, M. & Mátyás, C. (eds), Genetics of Scots pine. Akadémiai Kiadó, Budapest.Google Scholar
  8. Cox, C. B. & Moore, P. D. 1993. Biogeography: an ecological and evolutionary approach. Fifth edtion, Blackwell Scientific Publications, London.Google Scholar
  9. Crawley, M. J. 1992. Seed predators and plant population dynamics. Pp. 157–191. In: Fenner, M. (ed.), Seeds. The ecology of regeneration in plant communities. CAB International, Wallingford.Google Scholar
  10. Fisher, M. & Gardner, A. S. 1995. The status and ecology of a Juniperus excelsa subsp. polycarpos woodland in the northern mountains of Oman. Vegetatio 119: 55–51.Google Scholar
  11. García, D., Zamora, R., Hódar, J. A. & Gómez, J. M. 1999. Age structure of Juniperus communis L. in the Iberian peninsula: conservation of remnant populations in Mediterranean mountains. Biol. Conserv. 87: 215–220.Google Scholar
  12. Gashwiler, J. S. 1967. Conifer seed survival in a western Oregon clearcut. Ecology 48: 431–438.Google Scholar
  13. Gashwiler, J. S. 1970. Further study of conifer seed survival in a western Oregon clearcut. Ecology 51: 849–854.Google Scholar
  14. Herrera, C.M. 1984. Seed dispersal and fitness determinants in wild rose: combined effects of hawthorn, birds, mice, and browsing ungulates. Oecologia 63: 386–393.Google Scholar
  15. Hódar, J. A., Castro, J., Gómez, J. M., García, D. & Zamora, R. 1998. Effects of herbivory on growth and survival of seedlings and saplings of Pinus sylvestris nevadensis in SE Spain. Pp. 264–267. In: Papanastasis, V. P. & Peter, D. (eds), ‘Ecological Basis of Livestock Grazing in Mediterranean Ecosystems’, Office for Official Publications of the European Communities, Luxembourg.Google Scholar
  16. Hulme, P. E. 1993. Post-dispersal seed predation by small mammals. Proc. Symp. Zool. Soc. London 65: 269–287.Google Scholar
  17. Hulme, P. E. 1997. Post-dispersal seed predation and the establishment of vertebrate dispersed plants in Mediterranean scrublands. Oecologia 111: 91–98.Google Scholar
  18. Janzen, D. H. 1971. Seed predation by animals. Ann. Rev. Ecol. Syst. 2: 465–492.Google Scholar
  19. Johnson, E. A. & Fryer, G. I. 1996. Why Engelmann spruce does not have a persistent seed bank. Can. J. Forest Res. 26: 872–878.Google Scholar
  20. Jordano, P. 1990. Utilización de los frutos de Pistacia lentiscus (Anacardiaceae) por el Verderón ComÚn (Carduelis chloris). Pp. 145–153. In: Arias, L., Recuerda, P. & Redondo, T. (eds), Actas I Congreso Nacional de Etología. Monte de Piedad y Caja de Ahorros de Córdoba, Córdoba.Google Scholar
  21. Jules, E. S. 1998. Habitat fragmentation and demographic changes for a common plant: Trillium in old-growth forest. Ecology 79: 1645–1656.Google Scholar
  22. Kelly, D. 1994. The evolutionary ecology of mast seeding. Trends Ecol. Evol. 9: 465–470.Google Scholar
  23. Koski, V. 1991. Generative reproduction and genetic processes in nature. Pp. 59–72. In: Giertych, M. & Mátyás, C. (eds), Genetics of Scots pine. Akadémiai Kiadó, Budapest.Google Scholar
  24. Lescourret, F. & Genard, M. 1986. Consommation des graines de pin a crochets (Pinus uncinata Miller ex Mirbel) avant leur dissemination par les petits vertebrés dans les Pyrénées-orientales. Rev. Ecol. Terre Vie 41: 219–236.Google Scholar
  25. Lima, S. L. 1985. Maximizing feeding efficiency and minimizing time exposed to predators: a trade-off in Black-capped Chickadee. Oecologia 66: 60–67.Google Scholar
  26. Louda, S. M. 1989. Predation in the dynamics of seed regeneration. Pp. 25–51. In: Leck, M. A., Parker, V. T. & Simpson, R. L. (eds), Ecology of soil seed banks. Academic Press, Inc. San Diego.Google Scholar
  27. Manson, R. H. & Stiles, E. W. 1998. Links between microhabitat preferences and seed predation by small mammals in old fields. Oikos 82: 37–50.Google Scholar
  28. Miller, G. R. & Cummins, R. P. 1982. Regeneration of Scots pine Pinus sylvestris at a natural tree-line in the Cairngorm Mountains, Scotland. Holartic Ecol. 5: 27–34.Google Scholar
  29. Nilsson, S. G. & Wästljung, U. 1987. Seed predation and crosspollination in mast-seeding beech (Fagus sylvatica) patches. Ecology 68: 260–265.Google Scholar
  30. Pigott, C. D. & Pigott S. 1993. Water as a determinant of the distribution of trees at the boundary of the Mediterranean zone. J. Ecol. 81: 557–566.Google Scholar
  31. Pigott, C. D. 1992. Are the distribution of species determined by failure to set seeds?. Pp. 203–216. In: Marshall C. & Grace J. (eds.), Fruit and seed production. Aspects of development, environmental physiology and ecology. Cambridge Univeresity Press, Cambridge.Google Scholar
  32. Radvanyi, A. 1970. Small mammals and regeneration of white spruce forest in western Alberta. Ecology 51: 1102–1105.Google Scholar
  33. Russell, S. K. & Schupp, E. W. 1998. Effects of microhabitat patchiness on patterns of seed dispersal and seed predation of Cerocarpus ledifolius (Rosaceae). Oikos 81: 434–443.Google Scholar
  34. Santos, T. & Tellería, J. L. 1994. Influence of forest fragmentation on seed consumption and dispersal of Spanish juniper Juniperus thurifera. Biol. Conserv. 70: 129–134.Google Scholar
  35. Santos, T. & Tellería, J. L. 1997. Vertebrate predation on Holm oak, Quercus ilex, acorns in a fragmented habitat: effects on seedling recruitment. Forest Ecol. Manag. 98: 181–187.Google Scholar
  36. Schupp, E.W. & Fuentes, M. 1995. Spatial patterns of seed dispersal and the unification of plant population ecology. Écoscience 2: 267–275.Google Scholar
  37. Schupp, E. W. 1995. Seed-seedling conflicts, habitat choice, and patterns of plant recruitment. Am. J. Bot. 82: 399–409.Google Scholar
  38. Senar, J. C. 1981. On the Siskin's ability to discriminate between edible and aborted pine seeds. Miscellània Zoològica 7: 224–226.Google Scholar
  39. Silvertown, J. W. & Lovett-Doust, J. 1993. Introduction to plant population biology. Blackwell Science Ltd., Oxford.Google Scholar
  40. Simonetti, J. A. 1989. Microhabitat use by small mammals in central Chile. Oikos 56: 309–318.Google Scholar
  41. Vander-Wall, S. B. & Balda, R. P. 1977. Coadaptations of the Clark's Nutcracker and the Piñon pine for efficient seed harvest and dispersal. Ecol. Monogr. 47: 89–111.Google Scholar
  42. Wästljung, U. 1989. Effects of crop size and stand size on seed removal by vertebrates in hazel Corylus avellana. Oikos 54: 178–184.Google Scholar
  43. Woodward, F. I. 1990.-The impact of low temperatures in controlling the geographical distribution of plants. Phil. Trans. Roy. Soc. London B 326: 585–593.Google Scholar
  44. Zackrisson, O., Nilsson, M-C., Steijlen, Y. & Hörnberg, G. 1995. Regeneration pulses and climate-vegetation interactions in nonpyrogenic boreal Scots pine stands. J. Ecol. 83: 469–483.Google Scholar
  45. Zar, J. H. 1996. Biostatistical analysis. Third edition, Prentice Hall, New Jersey.Google Scholar
  46. Zasada, J. C., Sharik, T. L. & Nygren, M. 1992. The reproductive process in boreal forest trees. Pp. 85–125. In: Shugart, H. H., Leemans, R. & Bonan, G. B. (eds), System analysis of the global boreal forest. Cambridge University Press, Cambridge.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Jorge Castro
    • 1
  • José M. Gómez
    • 1
  • Daniel García
    • 1
  • Regino Zamora
    • 1
  • José A. Hódar
    • 1
  1. 1.Grupo de Ecología Terrestre, Departamento de Biología Animal y Ecología, Facultad de CienciasUniversidad de GranadaGranadaSpain

Personalised recommendations