Pacemaker Repetitive Nonreentrant Ventriculoatrial Synchronous Rhythm. A Review

  • S. Serge Barold
  • Paul A. Levine


Ventriculoatrial (VA) synchrony during dual chamber pacing can occur in any patient who has the ability to sustain repeated retrograde conduction. If the retrograde P wave is sensed, the result will be an endless loop tachycardia or repetitive reentrant VA synchrony. VA synchrony can also occur when a dual chamber pacemaker does not sense a retrograde P wave within the postventricular atrial refractory period. In this situation if the normally suprathreshold atrial stimulus at the end of the atrial escape interval is continually delivered when the atrial myocardium is physiologically refractory, the result will be a repetitive nonreentrant VA synchronous rhythm. Repetitive nonreentrant VA synchrony may produce unfavorable hemodynamic consequences and the pacemaker syndrome. It represents an example of functional atrial undersensing combined with functional loss of atrial capture. Management requires modification of the programmed settings of the pacemaker and utilization of certain algorithms designed for other functions but nevertheless effective in this situation.

dual chamber pacemaker ventriculoatrial conduction endless loop tachycardia ventriculoatrial synchrony atrial pacing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barold SS. Repetitive reentrant and nonreentrant ventriculoatrial synchrony in dual chamber pacing. Clin Cardiol1991;14:754-763.Google Scholar
  2. 2.
    Sudduth B, Goldschlager N. Retrograde ventriculoatrial conduction in atrial refractoriness. Cause of apparent failure of atrial capture. PACE1986;9:56-57.Google Scholar
  3. 3.
    VanGelder LM, El Gamal MIH. Ventriculoatrial conduction: a cause of atrial malpacing in AV universal pacemakers. A report of two cases. PACE1985;8:140.Google Scholar
  4. 4.
    Barold SS, Falkoff MD, Ong LS, et al. AV desynchronization arrhythmia during DDD pacing. In: Belhassen B, Feldman S, eds. Cardiac Pacing and Electrophysiology. Jerusalem: Keterpress Enterprises, 1987:177-184.Google Scholar
  5. 5.
    Barold SS. Repetitive nonreentrant ventriculoatrial synchrony in dual chamber pacing. In: Santini M, Pistolese M, Alliegro A, eds. Progress in Clinical Pacing. Amsterdam: Experta Medica, 1990:451-471.Google Scholar
  6. 6.
    Barold SS. Pacemaker induced repetitive ventriculoatrial synchrony: Initiation and termination by ventricular extrasystole. PACE1997;20:989-992.Google Scholar
  7. 7.
    Chien WW, Foster E, Phillips B, et al. Pacemaker syndrome in a patient with DDD pacemaker for long QT syndrome. PACE1991;14:1209-1212.Google Scholar
  8. 8.
    Schuüller H, Brandt J. The Pacemaker syndrome. Old and new causes. Clin Cardiol1991;14:336-340.Google Scholar
  9. 9.
    Ausubel K, Gabry MD, Klementowicz PT, et al. Pacemaker-mediated endless loop tachycardia at rates below the upper rate limit. Am J Cardiol1988;61:465-467.Google Scholar
  10. 10.
    Barold SS, Falkoff MD, Ong LS, et al. Magnet-unresponsive pacemaker endless loop tachycardia. Am Heart J1988;116:726-732.Google Scholar
  11. 11.
    Calkins H, El-Atassi R, Leon A, et al. Effect of the atrioventricular relationship on atrial refractoriness in humans. PACE1992;15:771-778.Google Scholar
  12. 12.
    Efremidis M, Sideris A, Prappa E, et al. Effect of atrial pressure increase on effective refractory period and vulnerability to atrial fibrillation in patients with lone atrial fibrillation. J Interv Card Electrophysiol1999;3:307-310.Google Scholar
  13. 13.
    Katsumoto K, Niibori T, Watanabe Y. Rate-dependent threshold changes during atrial pacing: clinical and experimental studies. PACE1990;13:1009-1019.Google Scholar
  14. 14.
    Claudon O, Andronache M, Dodinot B, et al. ECG trickery in dual chamber pacing: What are the proper settings in case of sinus dysfunction associated with borderline AV conduction. Stimucoeur2000;28:81-85.Google Scholar
  15. 15.
    Ellenbogen KA, Gilligan DM, Wood MA, et al. The pacemaker syndrome-a matter of definition. Am J Cardiol1997;79:1226-1229.Google Scholar
  16. 16.
    Stierle U, Kruger D, Vincent AM, et al. An optimized AV delay algorithm for patients with intermittent atrioventricular conduction. PACE1998;21:1035-1043.Google Scholar
  17. 17.
    Mayumi H, Kohno H, Yasui H, et al. Use of automatic mode change between DDD and AAI to facilitate native atrioventricular conduction in patients with sick sinus syndrome or transient atrioventricular block. PACE1996;19:1740-1747.Google Scholar
  18. 18.
    Linde C. The clinical utility of positive and negative AV/PV hysteresis. In: Santini M, ed. Progress in Clinical Pacing. Armonk NY: Futura Media Services, 1997:339-345.Google Scholar
  19. 19.
    Levine PA, Barold SS. Pacemaker automaticity: enabled by a multiplicity of new algorithms. In: Singer I, Barold SS, Camm AJ, eds. Nonpharmacologic Therapy of Arrhythmias for the 21st Century: The State of the Art. Armonk, NY: Futura, 1998:845-880.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • S. Serge Barold
    • 1
  • Paul A. Levine
    • 2
  1. 1.The Electrophysiology Institute, Broward General HospitalFt. Lauderdale
  2. 2.St. Jude Medical Cardiac Rhythm Management DivisionSylmar CA and Loma Linda University School of MedicineLoma Linda

Personalised recommendations