Heart Failure Reviews

, Volume 5, Issue 1, pp 73–86

Role of Paraventricular Nucleus in Mediating Sympathetic Outflow in Heart Failure

  • Kaushik P. Patel


A number of neurohumoral processes are activated in heart failure, including an increase in the plasma concentration of norepinephrine. Few studies have been performed to examine the role of the central nervous system in the activation of sympathetic outflow during heart failure (HF). In this paper I review these limited studies, with particular emphasis on examining the role of the paraventricular nucleus (PVN) in the exaggerated sympathetic outflow commonly observed in heart failure. The conclusion is that heart failure is associated with changes in specific areas in the brain and that alterations in the activation of neurons in the PVN are likely related to abnormalities in vasopressin production, blood volume regulation, and sympathoexcitation observed in the heart failure state. Furthermore, neuronal nitric oxide within the PVN that is involved in mediating sympathetic outflow via a GABA mechanism from the PVN may be deficient in inhibiting overall sympathetic outflow leading to the exaggerated sympathetic outflow commonly observed in heart failure.

paraventricular nucleus nitric oxide GABA sympathetic nerve activity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cohn JN, Levine TB, Olivari MT, Garberg V, Lura D, Francis GS, Simon AB, Rector T. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. New Engl J Med 1984;311:819–823.Google Scholar
  2. 2.
    Packer M. Neurohumoral interactions and adaptations in congestive heart failure. Circulation 1988;77:721–730.Google Scholar
  3. 3.
    Mancia G. Sympathetic activation in congestive Heart Failure. Europ Heart J 1990;11(supp. A):3–11.Google Scholar
  4. 4.
    Zucker IH, Wang W, Brändle M, Schultz HD, Patel KP. Neural regulation of sympathetic nerve activity in heart failure. Prog Cardiovasc Dis 1995;37:397–414.Google Scholar
  5. 5.
    Patel KP. Neural regulation in experimental heart failure. Bailliere's Clin Neurol 1997;6:283–296.Google Scholar
  6. 6.
    Stumpe KO, Zolle H, Klein H, Kruck F. Mechanism of sodium and water retention in rats with experimental HF. Kidney Int 1973;4:309–317.Google Scholar
  7. 7.
    Hostetter TH, Pfeffer JM, Pfeffer MA, Dworkin LD, Braunwald E, Brenner BM. Cardiorenal hemodynamics and sodium excretion in rats with myocardial infarction. Am J Physiol 1983;245:H98–H103.Google Scholar
  8. 8.
    DiBona G, Herman PJ, Sawin LL. Neural control of renal function in edema-forming states. Am J Physiol 1988;254:R1017–R1024.Google Scholar
  9. 9.
    Kon V, Yared A, Ichikawa I. Role of renal sympathetic nerves in mediating hypoperfusion of renal cortical microcirculation in experimental congestive HF and acute extracellular fluid volume depletion. J Clin Invest 1985;76:1913–1920.Google Scholar
  10. 10.
    Patel KP. A mathematical model to assess changes in the neural component of the volume reflex in rats with myocardial infarct. Fed Proc 1992;6:A1777.Google Scholar
  11. 11.
    Patel KP, Zhang PL, Carmines PK. Neural influences on renal responses to acute volume expansion in rats with heart failure. Am J Physiol 1996;271:H1441–H1448.Google Scholar
  12. 12.
    Jung R, Dibner-Dunlap ME, Gilles MA, Thames MD. Cardiorespiratory reflex control in rats with left ventricular dysfunction. Am J Physiol 1995;268:H218–H225.Google Scholar
  13. 13.
    DiBona GF, Jones SY, Brooks VL. ANG II receptor blockade and arterial baroreflex regulation of renal nerve activity in cardiac failure. Am J Physiol Regul Integr Comp Physiol 1995;269:R1189–R1196.Google Scholar
  14. 14.
    Feng QP, Carlsson S, Thoren P, Hedner T. Characteristics of renal sympathetic nerve activity in experimental congestive heart failure in the rat. Acta Physiol Scand 1994;150:259–266.Google Scholar
  15. 15.
    Leenen FHH, Huang BS, Yu HL, Yuan BX. Brain 'ouabain' mediates sympathetic hyperactivity in congestive heart failure. Circ Res 1995;77:993–1000.Google Scholar
  16. 16.
    Hopp FA, Seagard JL, Kampine JP. Comparison of four methods of averaging nerve activity. Am J Physiol 1986;251:R700–R711.Google Scholar
  17. 17.
    Patel KP, Zhang K, Carmines PK. Norepinephrine turnover in peripheral tissues of rats with heart failure. Am J Physiol 1999;277:R000.Google Scholar
  18. 18.
    Hirsch AT, Dzau VJ, Creager MA. Baroreceptor function in congestive heart failure: effect on neurohumoral activation of vascular resistance. Circulation 1987;75(suppl IV):IV36–IV48.Google Scholar
  19. 19.
    Leimbach WN, Gunner Wallin B, Victor RG, Aylward PE, Sundlof G, Mark AL. Direct evidence from intraneural recordings for increased central sympathetic outflow in patients with heart failure. Circulation 1986;73:913–919.Google Scholar
  20. 20.
    Zucker IH. Baro and cardiac reflex abnormalities in chronic heart failure. In: Reflex Control of Circulation Boca Raton, FL, CRC Press, 1991, pp 849–873.Google Scholar
  21. 21.
    Zucker IH, Gilmore JP. Aspects of cardiovascular reflexes in pathologic states. Fed Proc 1985;44:2400–2407.Google Scholar
  22. 22.
    Mizelle HL, Hall JE, Montani JP. Role of renal nerves in control of sodium excretion in chronic congestive HF. Am J Physiol 1989;256:F1084–F1093.Google Scholar
  23. 23.
    Zucker IH, Share L, Gilmore JP. Renal effects of left atrial distension in dogs with chronic heart failure. Am J Physiol 1979;236:H554–H560.Google Scholar
  24. 24.
    Greenberg TT, Richmond WH, Stocking RA, Gupta PD, Meehan JP, Henry JP. Impaired atrial receptor responses in dogs with heart failure due to tricuspid insufficiency and pulmonary artery stenosis. Circ Res 1973;32:424–433.Google Scholar
  25. 25.
    Palkovits M, Brownstein M. Brain microdissection techniques, in Cuello AE (ed): Brain microdissection techniques. Chichester, John Wiley & Sons, 1983.Google Scholar
  26. 26.
    Brandle M, Patel KP, Wang W, Zucker IH. Hemodynamic and norepinephrine responses to pacing-induced heart failure in conscious sinoaortic-denervated dogs. J Appl Physiol 1996;81:1855–1862.Google Scholar
  27. 27.
    Brändle M, Patel KP, Wang W, Zucker IH. Hemodynamic and norepinephrine responses to pacinginduced heart failure in conscious sinoaortic-denervated dogs. J Appl Physiol 1996;81:1855–1862.Google Scholar
  28. 28.
    Levett JM, Marinelli CC, Lund DD, Pardini BJ, Nader S, Scott BD, Augelli NV, Kerber RE, Schmid PG, Jr. Effects of ?-blockade on neurohumoral responses and neurochemical markers in pacinginduced heart failure. Am J Physiol 1994;266: H468–H475.Google Scholar
  29. 29.
    Patel KP, Zhang K. Neurohumoral activation in heart failure: Role of paraventricular nucleus. Clin Exp Pharmacol Physiol 1996;23:722–726.Google Scholar
  30. 30.
    Zhang WG, Huang BS, Leenen FHH. Brain reninangiotensin system and sympathetic hyperactivity in rats after myocardial infarction. Am J Physiol 1999;276:H1608–H1615.Google Scholar
  31. 31.
    Liu JL, Murakami H, Sanderford M, Bishop VS, Zucker IH. ANG II and baroreflex function in rabbits with CHF and lesions of the area postrema. Am J Physiol 1999;277:H342–H350.Google Scholar
  32. 32.
    Huang BS, Yuan BX, Leenen FHH. Blockade of brain “ouabain” prevents the impairment of baroreflexes in rats after myocardial infarction. Circulation 1997;96:1654–1659.Google Scholar
  33. 33.
    Huang BS, Leenen FHH. Both brain angiotensin II and “ouabain” contribute to sympathoexcitation and hypertension in Dahl S rats on high salt intake. Hypertension 1998;32:1028–1033.Google Scholar
  34. 34.
    Vahid-Ansari F, Leenen FHH. Pattern of neuronal activation in rats with CHF after myocardial infarction. Am J Physiol Heart Circ Physiol 1998;275:H2140–H2146.Google Scholar
  35. 35.
    Oren RM, Roach PJ, Berg WJ, Schobel HP, Ferguson DW. Resting muscle sympathetic activity correlates with right rather than left ventricular ejection fraction in human heart failure. J Am Coll Cardiol 1991;17:21A.Google Scholar
  36. 36.
    Ferguson DW, Berg WJ, Sanders JS. Clinical and hemodynamic correlates of sympathetic nerve activity in normal humans and patients with heart failure: evidence from direct microneurographic recordings. J Am Coll Cardiol 1990;16:1125–1134.Google Scholar
  37. 37.
    Kaye DM, Lambert GW, Lefkovits J, Morris M, Jennings G, Esler MD. Neurochemical evidence of cardiac sympathetic activation and increased central nervous system norepinephrine turnover in severe congestive heart failure. J Am Coll Cardiol 1994;23:570–578.Google Scholar
  38. 38.
    Lambert GW, Kaye DM, Lefkovits J, Jennings GL, Turner AG, Cox HS, Esler MD. Increased central nervous system monoamine neurotransmitter turnover and its association with sympathetic nervous activity in treated heart failure patients. Circulation 1995;92:1813–1818.Google Scholar
  39. 39.
    Swanson LW, Sawchenko PE. Hypothalamic integration: Organization of the paraventricular and supraoptic nuclei. Ann Rev Neurosci 1983;6:269–324.Google Scholar
  40. 40.
    Swanson LW, Sawchenko PE. Paraventricular nucleus: a site for the integration of neuroendocrine and autonomic mechanisms. Neuroendocrinology 1980;31:410–417.Google Scholar
  41. 41.
    Patel KP, Zhang PL, Krukoff TL. Alterations in brain hexokinase activity associated with heart failure in rats. Am J Physiol 1993;265:R923–R928.Google Scholar
  42. 42.
    Kidd C. Central neurons activated by cardiac receptors, in Hainsworth R, Kidd C, Linden RJ (eds): Cardiac receptors. Cambridge, Cambridge University Press, 1979, pp 377–403.Google Scholar
  43. 43.
    Thoren P. Role of cardiac vagal c-fibers in cardiovascular control. Rev Physiol Biochem Pharmacol 1979;86:1–94.Google Scholar
  44. 44.
    Strack AM, Sawyer WB, Hughes JH, Platt KB, Loewy AD. A general pattern of CNS innervation of the sympathetic outflow demonstrated by transneuronal pseudorabies viral infections. Brain Res 1989;491:156–162.Google Scholar
  45. 45.
    Poulain DA, Wakerly JB. Electrophysiology of hypothalamic magnocellular neurones secreting oxytocin and vasopressin. Neuroscience 1982;7:773–808.Google Scholar
  46. 46.
    Lovick TA, Malpas S, Mahoney MT. Renal vasodilatation in response to acute volume load is attenuated following lesions of parvocellular neurones in the paraventricular nucleus in rats. J Auton Nerv Syst 1993;43:247–256.Google Scholar
  47. 47.
    Patel KP, Schmid PG. Role of the paraventricular nucleus (PVH) in baroreflex-mediated changes in lumbar sympathetic nerve activity and heart rate. J Auton Nerv Syst 1988;22:211–219.Google Scholar
  48. 48.
    Haselton JR, Goering J, Patel KP. Parvocellular neurons of the paraventricular nucleus are involved in the reduction in renal nerve discharge during isotonic volume expansion. J Auton Nerve Syst 1994;50:1–11.Google Scholar
  49. 49.
    Swanson LW, Kuypers HGJM. The paraventricular nucleus of the hypothalamus: cytoarchitectonic subdivisions and organization of the projections to the pituitary, dorsal vagal complex, and spinal cord as demonstrated by retrograde fluorescence double-labeling methods. J Comp Neurol 1980;194:555–570.Google Scholar
  50. 50.
    Swanson LW, McKellar S. The distribution of oxytocin-and neurophysin-stained fibers in the spinal cord of the rat and monkey. J Comp Neurol 1979;188:87–106.Google Scholar
  51. 51.
    Wurster RD. Spinal sympathetic control of the heart, in Randall WC (ed): Neural Regulation of the Heart. New York, Oxford University Press, 1977, pp 211–246.Google Scholar
  52. 52.
    Taylor RB, Weaver LC. Spinal stimulation to locate preganglionic neurons controlling the kidney, spleen, or intestine. Am J Physiol (Heart Circ Physiol) 1992;263:H1026–H1033.Google Scholar
  53. 53.
    Lovick TA, Coote JH. Electrophysiological properties of paraventriculo-spinal neurones in the rat. Brain Res 1988;454:123–130.Google Scholar
  54. 54.
    Lovick TA, Coote JH. Effects of volume loading on paraventriculo-spinal neurones in the rat. J Auton Nerv Syst 1988;25:135–140.Google Scholar
  55. 55.
    Lovick TA, Coote JH. Circulating atrial natriuretic factor activates vagal afferent inputs to paraventriculo-spinal neurones in the rat. J Auton Nerv Syst 1989;26:129–134.Google Scholar
  56. 56.
    Schultz HD, Gardner DG, Deschepper F, Coleridge HM, Coleridge JCG. Vagal C-fiber blockade abolishes sympathetic inhibition by atrial natriuretic factor. Am J Physiol 1988;255:R6–R13.Google Scholar
  57. 57.
    Krukoff TL. Expression of c-fos in studies of central autonomic and sensory systems. Mol Neurobio 1993;7:247–263.Google Scholar
  58. 58.
    Kannan H, Hayashida Y, Yamashita H. Increase in sympathetic outflow by paraventricular nucleus stimulation in awake rats. Am J Physiol 1989;256:R1325–R1330.Google Scholar
  59. 59.
    Katafuchi TY, Oomura Y, Kurosawa M. Effects of chemical stimulation of paraventricular nucleus on adrenal and renal nerve activity in rats. Neurosci Lett 1988;86:195–200.Google Scholar
  60. 60.
    Lu X-Z, Sun X-Y, Yao T. Inhibition of renal nerve activity induced by chemical stimulation of the paraventricular nucleus: mediation of the vasopressinergic spinally-projecting pathway. Chin J Physiol Sci 1991;7:215–221.Google Scholar
  61. 61.
    Martin DS, Haywood JR. Sympathetic nervous system activation by glutamate injections into the paraventricular nucleus. Brain Res 1992;577:261–267.Google Scholar
  62. 62.
    Sole MJ, Hussain MN, Lixfeld W. Activation of brain catecholaminergic neurons by cardiac vagal afferents during acute myocardial ischemia in the rat. Circ Res 1980;47:166–172.Google Scholar
  63. 63.
    Sole MJ, Versteeg DHG, Ronald de Kloet ER, Hussain MN, Lixfeld W. The identification of specific serotonergic nuclei inhibited by cardiac vagal afferents during acute myocardial ischemia in the rat. Brain Res 1983;265:55–61.Google Scholar
  64. 64.
    Sole MJ, Hussain MN, Versteeg DHG, Ronald de Kloet ER, Adams D, Lixfeld W. The identification of specific brain nuclei in which catecholamine turnover is increased by left ventricular receptors during acute myocardial ischemia in the rat. Brain Res 1982;235:315–325.Google Scholar
  65. 65.
    Sole MJ, Shum A, VanLoon GR. Alterations in brain serotonin during congestive heart failure in the cardiomyopathic Syrian hamster. Cardiovasc Res 1978;12:373–375.Google Scholar
  66. 66.
    Sole MJ, Benedict CR, Versteeg DHG, Ronald de Kloet E. Digitoxin therapy partially restores cardiac catecholamine and brain serotonin metabolism in congestive heart failure. J Mol Cell Cardiol 1985;17:1055-1063Google Scholar
  67. 67.
    Basu S, Sinha SK, Shao Q, Ganguly PK, Dhalla NS. Neuropeptide Y modulation of sympathetic activity in myocardial infarction. J Am Coll Cardiol 1996;27:1796–1803.Google Scholar
  68. 68.
    Hodsman GP, Kohzuki M, Howes LG, Sumithran E, Tsunoda K, Johnston CI. Neurohumoral responses to chronic myocardial infarction in the rat. Circulation 1988;78:376–381.Google Scholar
  69. 69.
    Goldsmith SR, Francis GS, Cowley AW, Cohn JN. Increased plasma arginine vasopressin levels in patients with congestive heart failure. J Am Coll Cardiol 1983;106:1385–1390.Google Scholar
  70. 70.
    Akama H, McGrath BP, Badoer E. Volume expansion fails to normally activate neural pathways in the brain of conscious rabbits with heart failure. J Auton Nerv Syst 1998;73:54–62.Google Scholar
  71. 71.
    Schultz HD, Wang W, Ustinova EE, Zucker IH. Enhanced responsiveness of cardiac vagal chemosensitive endings to bradykinin in heart failure. Am J Physiol 1997;273:R637–R645.Google Scholar
  72. 72.
    Kannan H, Hayashida Y, Yamashita H. Increase in sympathetic outflow by paraventricular nucleus stimulation in awake rats. Am J Physiol Regul Integr Comp Physiol 1989;256:R1325–R1330.Google Scholar
  73. 73.
    Porter JP, Brody MJ. Neural projections of paraventricular nucleus that subserve vasomotor functions. Am J Physiol Regul Integr Comp Physiol 1985;248: R271–R281.Google Scholar
  74. 74.
    Zucker IH, Wang W. Reflex control of renal sympathetic nervous activity in heart failure. Herz 1991;16:82–91.Google Scholar
  75. 75.
    Brandle M, Wang W, Zucker IH. Ventricular mechanore flex and chemoreflex alterations in chronic heart failure. Circ Res 1994;74:262–270.Google Scholar
  76. 76.
    Sun SY, Wang W, Zucker IH, Schultz HD. Enhanced peripheral chemoreflex function in conscious rabbits with pacing-induced heart failure. J Appl Physiol 1999;86:1264–1272.Google Scholar
  77. 77.
    Ma R, Zucker IH, Wang W. Central gain of the cardiac sympathetic afferent reflex in dogs with heart failure. Am J Physiol 1997;273:H2664–H2671.Google Scholar
  78. 78.
    Sterns DA, Ettinger SM, Gray KS, Whisler SK, Mosher TJ, Smith MB, Sinoway LI. Skeletal muscle metaboreceptor exercise responses are attenuated in heart failure. Circulation 1991;84:2034–2039.Google Scholar
  79. 79.
    Ciriello J, Calaresu FR. Role of paraventricular and supraoptic nuclei in central cardiovascular regulation in the cat. Am J Physiol 1980;239:R137–R142.Google Scholar
  80. 80.
    Ustinova E, Schultz HD. Activation of cardiac vagal C-fiber afferents by reactive oxygen species. FASEB J 1993;7:A98–A90 (abstract).Google Scholar
  81. 81.
    Dorward PK, Bell LB, Rudd CD. Cardiac afferents attenuate renal sympathetic baroreceptor reflexes during acute hypertension. Hypertension 1990;16:131–139.Google Scholar
  82. 82.
    Collins HL, DiCarlo SE. Cardiac afferents attenuate the muscle metaboreflex in rat. J Appl Physiol 1993;75:114–120.Google Scholar
  83. 83.
    Schuman EM, Madison DV. Nitric oxide and synaptic function. Ann Rev neurosci 1994;17:153–183.Google Scholar
  84. 84.
    Bredt DS, Hwang PM, Snyder SH. Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 1990;347:768–770.Google Scholar
  85. 85.
    Vincent SR, Kimura H. Histochemical mapping of nitric oxide synthase in the rat brain. Neuroscience 1992;46:755–784.Google Scholar
  86. 86.
    Miyagawa A, Okamura H, Ibata Y. Coexistence of oxytocin and NADPH-diaphorase in magnocellular neurons of the paraventricular and the supraoptic nuclei of the rat hypothalamus. Neurosci Lett 1994;171:13–16.Google Scholar
  87. 87.
    Sanchez F, Alonso JR, Arevalo R, Blanco E, Aijon J, Vanzquez R. Coexistence of NADPH-diaphorase with vasopressin and oxytocin in the hypothalamic magnocellular neurosecretory nuclei of the rat. Cell Tissue Res 1994;276:31–34.Google Scholar
  88. 88.
    Garthwaite J, Boulton CL. Nitric oxide signaling in the central nervous system. Annu Rev Physiol 1995;57:683–706.Google Scholar
  89. 89.
    Toda N, Kitamura Y, Okamura T. Neural mechanism of hypertension by nitric oxide synthase inhibitor in dogs. Hypertension 1993;21:3–8.Google Scholar
  90. 90.
    Sander M, Hansen PG, Victor RG. Sympathetically mediated hypertension caused by chronic inhibition of nitric oxide. Hypertension 1995;26:691–695.Google Scholar
  91. 91.
    Sakuma I, Togashi H, Yoshida M, Saito H, Yanagida M, Tamura M, Kobayashi T, Yasuda H, Gross SS, Levi R. N-methyl-L-arginine, an inhibitor of L-arginine-derived nitric oxide synthesis, stimulates renal sympathetic nerve activity in vivo: A role for nitric oxide in the central regulation of sympathetic tone? Circ Res 1992;70:607–611.Google Scholar
  92. 92.
    Togashi H, Sakuma I, Yoshioka M, Kobayashi T, Yasuda H, Kitabatake A, Saito H, Gross SS, Levi R. A central nervous system action of nitric oxide in blood pressure regulation. J Pharmacol Exp Ther 1992;262:343–347.Google Scholar
  93. 93.
    Ma S, Abboud FM, Felder RB. Effects of L-argininederived nitric oxide synthesis on neuronal activity in nucleus tractus solitarius. Am J Physiol 1995;268:R487–R491.Google Scholar
  94. 94.
    Rauch M, Schmid HA, de Vente J, Simon E. Electrophysiological and immunocytochemical evidence for a cGMP-mediated inhibition of subfornical organ neurons by nitric oxide. J Neurosci 1997;January 1, 17(1):363–371.Google Scholar
  95. 95.
    Bains JS, Ferguson AV. Nitric oxide regulates NMDA-driven GABAergic inputs to type I neurones of the rat paraventricular nucleus. J Physiol (Lond) 1997;499:733–746.Google Scholar
  96. 96.
    Bains JS, Ferguson AV. Nitric oxide depolarizes type II paraventricular nucleus neurons in vitro. Neuroscience 1997;79:149–159.Google Scholar
  97. 97.
    Horn T, Smith PM, McLaughlin BE, Bauce L, Marks GS, Pittman QJ, Ferguson AV. Nitric oxide actions in paraventricular nucleus: Cardiovascular and neurochemical implications. Am J Physiol 1994;266:R306–R313.Google Scholar
  98. 98.
    Zhang K, Mayhan WG, Patel KP. Nitric oxide within the paraventricular nucleus mediates changes in renal sympathetic nerve activity. Am J Physiol 1997;273:R864–R872.Google Scholar
  99. 99.
    Zhang K, Patel KP. Effect of nitric oxide within the paraventricular nucleus on renal sympathetic nerve discharge: Role of GABA. Am J Physiol 1998;275:R728–R734.Google Scholar
  100. 100.
    Drexler H, Lu W. Endothelial dysfunction of hindquarter resistance vessels in experimental heart failure. Am J Physiol (Heart Circ Physiol) 1992;262: H1640–H1645.Google Scholar
  101. 101.
    Kaiser L, Spickard RC, Olivier NB. Heart failure depresses endothelium-dependent responses in canine femoral artery. Am J Physiol 1989;256: H962–H967.Google Scholar
  102. 102.
    Kubo SH, Rector TS, Bank AJ, Willams RE, Heifetz SM. Endothelium-dependent vasodilation is attenuated in patients with heart failure. Circulation 1991;84:1589–1596.Google Scholar
  103. 103.
    Smith CJ, Sun D, Hoegler C, Roth BS, Zhang X, Zhao G, Xu XB, Kobari Y, Pritchard K, Jr., Sessa WC, Hintze TH. Reduced gene expression of vascular endothelial NO synthase and cyclooxygenase-1 in heart failure. Circ Res 1996;78:58–64.Google Scholar
  104. 104.
    Patel KP, Zhang K, Zucker IH, Krukoff TL. Decreased gene expression of neuronal nitric oxide synthase in hypothalamus and brainstem of rats in heart failure. Brain Res 1996;734:109–115.Google Scholar
  105. 105.
    Zhang K, Zucker IH, Patel KP. Altered number of diaphorase (NOS) positive neurons in the hypothalamus of rats with heart failure. Brain Res 1998;786:219–225.Google Scholar
  106. 106.
    Hope BT, Michael GJ, Knigge KM, Vincent SR. Neuronal NADPH diaphorase is a nitric oxide synthase. Proc Natl Acad Sci USA 1991;88:2811–2814.Google Scholar
  107. 107.
    Dawson TM, Bredt DS, Fotuhi M, Hwant PM, Snyder SH. Nitric oxide synthase and neuronal NADPH diaphorase are identical in brain and peripheral tissues. Proc Natl Acad Sci USA 1991;88:7797–7801.Google Scholar
  108. 108.
    Goldstein A. Biostatistics: An introductory text, New York, The Macmillan Company, 1964, pp 144.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Kaushik P. Patel
    • 1
  1. 1.Department of Physiology and BiophysicsUniversity of Nebraska Medical CenterOmaha

Personalised recommendations