Nutrient Cycling in Agroecosystems

, Volume 56, Issue 3, pp 195–207 | Cite as

Fertilization response and nutrient diagnosis in peach palm (Bactris gasipaes): a review

  • J. Deenik
  • A. Ares
  • R.S. Yost


Peach palm (Bactris gasipaes Kunth) is a relatively new food crop with great potential for the humid tropics. Native to tropical America, it is commercially grown to produce hearts-of-palm and, to a lesser extent, an edible fruit. Peach palm is well adapted to nutrient poor, acid soils, and is cultivated in Brazil and Costa Rica on highly weathered soils with low pH, high aluminum saturation and, often, low organic matter content. Fertilization trials on peach palm have shown significant responses to applied nitrogen while the response to other nutrients such as phosphorus has been less frequent. Additional research, however, is necessary to determine soil and foliar nutrient critical levels and to address questions concerning peach palm growth responses to nutrient additions varying in time and space. Recycled nutrients likely contribute significantly to peach palm nutrition because plant residues are produced in considerable amounts and can decompose rapidly in commercial peach palm plantation in humid environments where cut leaves and stems are left in the field following harvest. On the other hand, nutrient exports from the system are relatively small (e.g., 4.8–6.4 kg P ha-1yr-1, 28–32.3 kg N ha-1 yr-1, 31–45.2 kg K ha-1 yr-1). As for most perennial tree crops, diagnosis of nutrient deficiencies in peach palm is less clear than in annual crops because of factors such as nutrient cycling, internal retranslocation, stand age, foliage age and position within the crown, and seasonal and climatic variations. Some studies on peach palm have examined variation in nutrient content within leaves and plants, and among plants as well, but the sensitivity of different plant tissues to reflect changes in nutrient uptake and response to nutrient additions should be investigated in controlled field experiments.

fertilization nutrient cycling nutrient diagnosis peach palm tree crops 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alvarado A & Smith FJ (1998) Baseline study of landuse management and decision making processes with a focus on nontraditional crops, small farmer, agro-industry, and development policy in Costa Rica. Decision Aids for Soil Nutrient Management Project (IntDSS), Soil Management Collaborative Research Support Program, University of Costa Rica and North Carolina State University, 13 ppGoogle Scholar
  2. Arkcoll D (1982) Algumas consideraç õ es adicionais sobre adubaç ã o na Amazõ nia. Curso de Atualizaç ã o de Fertilidade do Solo-Amazonia Ocidental, Manaus, BrazilGoogle Scholar
  3. Ascencio J (1994) Acid phosphatase as a diagnostic tool. Commun Soil Sci Plant Anal 25: 1553–1564Google Scholar
  4. Ascencio J (1997) Root secreted acid phosphatase kinetics as a physiological marker for phosphorus deficiency. J Plant Nutr 20: 9–26Google Scholar
  5. Benites JR (1990) Agroforestry systems with potential for acid soils of the humid tropics of Latin America and the Caribbean. For Ecol Manage 36: 81–101Google Scholar
  6. Bergman C, Sturhman M & Zech W (1994) Site factors, foliar nutrient levels and growth of Cordia alliodora plantations in the humid lowlands of northern Costa Rica. Plant Soil 166: 193–204Google Scholar
  7. Binkley D (1986) Forest Nutrition Management, John Wiley and Sons Inc, New YorkGoogle Scholar
  8. Bovi MLA (1998) Palmito pupunha: Informaç õ es básicas para cultivo. Boletim Técnico 173, Instituto Agronô mico Campinas, BrazilGoogle Scholar
  9. Bovi MLA & Cantarella H (1997) Pupunha para extraç ã o de palmito. In: van Raij B, Cantarella H, Quaggio JA & Cangiani AM (eds) Recomendaç õ es de adubaç ã o e calagem para o estado de Sã o Paulo. Boletim Técnico 100, Instituto Agronô mico, Campinas, BrazilGoogle Scholar
  10. Bovi MLA, Basso LC & Tucci MLS (1998) Avaliaç ã o da atividade ‘in vivo’ da fosfatase ácida e do crescimento de progê nies de pupunheira cultivadas em duas doses de nitrogê nio e fó sforo. R Bras Ci Solo 22: 427–434Google Scholar
  11. Carvalho ARV, Silva EMR, Cozzolino K, Baldani VLD & Döbereiner J (1997) Associaç ã o simbió tica entre bactérias diazotró ficas e fungos micorrízicos arbusculares em mudas de pupunheira. Abstract 26th Congresso Brasileiro do Ciencia do Solo, Rio de Janeiro, BrazilGoogle Scholar
  12. Chapman GW & Gray HM (1949) Leaf analysis and the nutrition of oil palm. Ann Bot (London) 13: 415–433Google Scholar
  13. Clement CR (1989) The potential use of the pejibaye palm in agroforestry systems. Agrofor Syst 7: 201–212Google Scholar
  14. Clement CR & Habte M (1994) Effect of soil solution phosphorus on seedling growth of the pejibaye palm in an oxisol. J Plant Nutr 17: 639–655Google Scholar
  15. Clement CR & Habte M (1995) Genotypic variation in vesiculararbuscular mycorrhizal dependence of the pejibaye palm. J Plant Nutr 18: 1907–1916Google Scholar
  16. Clement CR, Manshardt RM, DeFrank J, Cavaletto CG & Nagai NY (1996) Introduction of pejibaye for heart-of-palm in Hawaii. Hortscience 31: 765–768Google Scholar
  17. Cooil BJ, Watanabe Y & Nakata S (1966) Relationship of phosphorus supply to growth, yield, and leaf composition in macadamia. University of Hawaii, College of Tropical Agriculture, Hawaii Agricultural Experiment Station, Technical Bulletin No. 66, pp 6–71. Honolulu, USAGoogle Scholar
  18. Coulter JK (1958) Mineral nutrition of the oil palm in Malaya. Malay Agric J 41: 131–151Google Scholar
  19. Cravo MS, Moraes CRA & Cruz LAA (1996) Extraç ã o de nutrientes por palmito de pupunha. Abstract XXII Reuniã o Brasileira de Fertilidade do Solo e Nutriç ã o de Plantas, pp 624–625. Manaus, BrazilGoogle Scholar
  20. Dighton J & Harrison AF (1990) Changes in phosphate status of sitka-spruce plantations of increasing age, as determined by root bioassay. For Ecol Manage 31: 35–44Google Scholar
  21. Dighton J & Jones HE (1991) The use of roots to test N, P, and K deficiencies in eucalyptus nutrition. In: IUFRO Symposium, Intensive Forestry: The Role of Eucalypts, Vol. 2, pp 635–644. Durban, South AfricaGoogle Scholar
  22. Drechsel P & Zech W (1991) Foliar nutrient levels of broad-leaved tropical trees: a tabular review. Plant Soil 131: 29–46Google Scholar
  23. Drechsel P & Zech W (1993) Mineral nutrition of tropical trees. In: L. Pancel (ed.) Tropical Forestry Handbook, chap. 9, pp 515–567. Springer, BerlinGoogle Scholar
  24. Evans J (1979) The effects of leaf position and leaf age in foliar analysis of Gmelina arborea. Plant Soil 52: 547–552Google Scholar
  25. Falcã o NPS, Ribeiro GA & Ferraz J (1994) Teores de nutrientes em folhas de pupunheira em diferentes estádios fisioló gicos. Abstract XII Congresso Brasileiro de Fruticultura, Vol. 3, 1143–1144. Salvador-Bahia, Brazil.Google Scholar
  26. Ferreira SAN, Clement CR & Ranzani G (1980) Contribuiç ã o para o conhecimiento do sistema radicular da pupunheira (Bactris gasipaes H.B.K.-Guilielma gasipaes (H.B.K.) Bailey). I. Solo Latossolo Amarelo, textura média. Acta Amazonica 10: 245–249Google Scholar
  27. Ferreira SAN, Clement CR, Ranzani G & Costa SS (1995) Contribuiç ã o ao conhecimiento do sistema radicular da pupunheira (Bactris gasipaes Kunth, Palmae). II. Solo Amarelo, textura argilosa. Acta Amazonica 25: 161–170Google Scholar
  28. Forde CM (1976) Effect of dry season drought on uptake of radioactive phosphorus by surface roots of the oil palm (Elaeis guineensis Jacq.) Agric J 64: 622–623Google Scholar
  29. Foster HL (1976) Factors affecting fertilizer recovery, and some aspects of tissue analysis. In: Corley RHV, Hardon JJ & Wood BJ (eds) Oil Palm Research, pp 225- 230. Elsevier Scientific Publishing, AmsterdamGoogle Scholar
  30. Foster HL & Chang KC (1976) Seasonal fluctuations in oil palm leaf nutrient levels. MARDI Res Bull 5, 2: 74–90Google Scholar
  31. Gomes JBM, Menezes JMT & Filho PV (1987) Efeito de níveis de adubaç ã o e espaç amento na produç ã o de palmito de pupunheira em solo de baixa fertilidade na ragiã o de Ouro Preto d'Oeste-Ro. Documentos 19, Anais Palmito I Encontro Nacional de Pesquisadores, pp 261–266. Curitiba, Brazil.Google Scholar
  32. Grau Alvarado MH (1986) Determinació n de la hoja más indicativa para el análisis foliar del pijuayo (Bactris gasipaes H.B.K.). Thesis Universidad Nacional Agraria La Molina, Lima, Peru, 76 ppGoogle Scholar
  33. Guzmán P (1985) Nutrició n y fertilizació n del pejibaye (Repuesta del pejibaye para palmito a la aplicació n de N-P-K). Sétimo Informe de Labores de Diversificació n Agrícola, pp 41–46. ASBANA, Costa RicaGoogle Scholar
  34. Haron K, Brookes PC, Anderson JM & Zakaria ZZ (1998) Microbial biomass and soil organic matter dynamics in oil palm (Elaeis guineensis Jacq.) plantations, West Malaysia. Soil Biol Biochem 30: 547–552Google Scholar
  35. Hartley CWS (1977) The Oil Palm, Longman, New York, 806 ppGoogle Scholar
  36. Herrera W (1989) Fertilizació n del pejibaye para palmito. Serie Técnica Pejibaye, Universidad de Costa Rica, Boletín informativo 1: 4–10Google Scholar
  37. Hue NV, Smyth FJ & Wagger M (1998) Report on Trip to Costa Rica, SM-CRSP Project Decision Aids for Integrated Nutrient Management (IntDSS), Soil Management Collaborative Research Support Program, University of Costa Rica and North Carolina State Univeristy, 17 ppGoogle Scholar
  38. Husni A, Ghazali HM, Suhaimi WC & Adzmi Y (1996) Which leaf position in the crown of Tectonia grandis (teak) should be sampled for fertility (nutritional) evaluation? J Trop For Sci 9: 35–43Google Scholar
  39. Janos DP (1977) Vesicular-arbuscular mycorrhizae affect the growth of Bactris gasipaes. Principes 21: 12–18Google Scholar
  40. Jongschaap R (1993) Palmito (Bactris gasipaes H.B.K) growth and management in the humid lowlands of the Atlantic zone of Costa Rica. Report No. 60, Centro Agronó mico Tropical de Investigació n y Enseñ anza (CATIE), Agricultural University Wageningen, Ministerio de Agricultura y Ganadería de Costa Rica, 52 pp and appendixGoogle Scholar
  41. Kato AK, Müller CH, Matos AO, Kagawe ONC & Menezes AJM (1997) Influê ncia da adubaç ã o química NPK no crescimento e na produç ã o de materia seca de mudas de pupunheiras (Bactris gasipaes, H.B.K.) cultivadas no estado do Pará. Abstract 26th Congresso Brasileiro do Ciencia do Solo, Rio de Janeiro, BrazilGoogle Scholar
  42. Kimmins JP (1997) Forest Ecology: A Foundation for Sustainable Management. Prentice Hall, NJGoogle Scholar
  43. La Torraca SM, Haag HP & Dechen AR (1984) Nutriç ã o mineral de fruitíferas tropicais. I. Sintomas de carencias nutricionais em pupunha. Piracicaba 76: 53–56Google Scholar
  44. Lamb D (1976) Variations in the foliar concentrations of macro and micro elements in a fast-growing tropical eucalypt. Plant Soil 45: 477–492Google Scholar
  45. Lopes Reis E (1997) Respostas da pupunheira ao NPK na produç ã o de palmito no sul da Bahia. Expanded Abstract 26th Brazilian Soil Science Congress, Rio de Janeiro, BrazilGoogle Scholar
  46. Martin-Prevel P (1984) Banana. In: Martin-Prevel P, Gagnard J & Gautier P (eds), Plant Analysis as a Guide to the Nutrient Requirements of Temperate and Tropical Crops, pp 637–670. Lavoisier Publishing, New York, USAGoogle Scholar
  47. Martin-Prevel P, Gagnard J & Gautier P (eds) (1984) Plant Analysis as a Guide to the Nutrient Requirements of Temperate and Tropical Crops. Lavoisier Publishing, New YorkGoogle Scholar
  48. McGrath DA (1998) Ecological sustainability in Amazonian agroforests: An on-farm study of phosphorus and nitrogen dynamics following native forest conversion. Ph.D. dissertation, University of Florida, USA, 201 ppGoogle Scholar
  49. Mead DJ (1984) Diagnosis of nutrient deficiencies in plantations. In: Bowen GD & Nambiar EKS (eds) Nutrition of Plantation Forests, pp 259–291. Academic Press, London, UKGoogle Scholar
  50. Miller HG (1984) Dynamics of nutrient cycling in plantation ecosystems. In: Nutrition of Plantation Forests, pp 56–78. Academic Press, London, UKGoogle Scholar
  51. Mills HA & Jones JB (1996) Plant Analysis Handbook II. MicroMacro Publishing, Athens, USAGoogle Scholar
  52. Molina E (1997) Fertilizació n de pejibaye para palmito. Research Report for the Short-Course on Peach Palm Cultivation for Heart-of-palm Production, April 21- 23, Centro de Investigaciones Agronó micas, Universidad de Costa RicaGoogle Scholar
  53. Mora-Urpí J, Weber JC & Clement CR (1997) Peach palm Bactris gasipaes Kunth. International Plant Genetic Resource Institute (IPGRI). Promoting the conservation and use of underutilized and neglected crops No. 20Google Scholar
  54. Ng SK, Thamboo S & deSouza P (1968) Nutrient contents of oil palm in Malaya. II. Nutrient in vegetative tissues. Malay Agric J 46: 332–390Google Scholar
  55. Ochs R & Olivin J (1976) Research on mineral nutrition by the IRHO. In: Corley RHV, Hardon JJ & Woods BJ (eds) Oil Palm Research. Elsevier Scientific Publishing, AmsterdamGoogle Scholar
  56. Perez JM, Davey CB, McCollum RE, Pashanashi B & Benites JR (1987) Peach palm as a soil management option on Ultisols. Tropsoils Technical Report, pp 26–27. North Carolina State University, Raleigh, USAGoogle Scholar
  57. Perez J, Szott LT, McCollum RE & Arevalo L (1993) Effect of fertilization on early growth of pijuayo (Bactris gasipaes HBK) on an Amazon Ultisol. In: Mora-Urpí J, Szott LT, Murillo M and Patino VM. IV Congreso Internacional sobre Biología, Agronomía e Industrializació n del Pijuayo, pp 209–223. Editorial de la Universidad de Costa Rica, San José, Costa RicaGoogle Scholar
  58. Rognon F (1984) Oil palm. In: Martin-Prevel P, Gagnard J & Gautier P (eds) Plant Analysis as a Guide to the Nutrient Requirements of Temperate and Tropical Crops, pp 377–404. Lavoisier Publishing Inc, New YorkGoogle Scholar
  59. Sudo A, Silva EMR, Bovi MLA, Almeida DL & Cozzolino K (1996) Produç ã o demudas de pupunheira colonizadas por fungos micorrízicos arbusculares. R Bras Ci Solo 20: 529–532Google Scholar
  60. Szott LT, Palm CA & Sanchez PA (1991) Agroforestry in acid soils of the humid tropics. Adv Agric 45: 275–301Google Scholar
  61. Tan KS (1976) Efficient fertilizer usage for oil palm on inland soils. In: Earp DA and Newall W (eds) International Development in Oil Palm, pp 262–289. Yau Seng Press, Kuala Lumpur, MalaysiaGoogle Scholar
  62. Teoh KC, Chew PS, Soh AC & Chow CS (1981) A study of the seasonal fluctuations in leaf nutrient levels in oil palms in peninsular Malaysia. In: Pushparaj E & Soon CP (eds) The Oil Palm in Agriculture in the Eighties, vol. II. Palm Oil Research Institute of Malaysia and the Incorporated Society of Planters, MalaysiaGoogle Scholar
  63. van den Driessche R (1974) Prediction of mineral nutrient status of trees by foliar analysis. Bot Rev 40: 347–394Google Scholar
  64. van den Driessche R (1984) Nutrient storage, retranslocation and relationship of stress to nutrition. In: Nutrition of Plantation Forests, pp 181–209. Academic Press, LondonGoogle Scholar
  65. Williams CN & Hsu YC (1970) Oil palm cultivation in Malaya, 205 pp. University of Malaya Press, Kuala Lumpur, MalaysiaGoogle Scholar
  66. Wolf MA (1997) Accumulation of biomass and nutrients in the aboveground organs of four local tree species in monoculture and polyculture systems in central Amazô nia. Thesis Diplomarbeit Universität Bayreuth, Germany, 299 pp and annexGoogle Scholar
  67. Yost RS, Hirae H & Shirey R (1998) Sampling macadamia for tissue nutrient analysis: why look for the new bud? Department of Agronomy and Soil Science, University of Hawaii at Manoa, Honolulu, USA, 7 ppGoogle Scholar
  68. Yuyama K (1997) Sistemas de cultivo para produç ã o de palmito da pupunheira. Horticultura Brasileira 15: 191–198Google Scholar
  69. Zamora C & Flores CL (1984) Ensayo sobre niveles de fó sforo en pejibaye para palmito. Sexto Informe de Labores 1983- 1984. Diversificació n Agrícola ASBANA, Costa Rica, pp 62–65Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • J. Deenik
    • 1
  • A. Ares
    • 1
  • R.S. Yost
    • 1
  1. 1.Department of Agronomy & Soil ScienceUniversity of Hawaii at ManoaHonoluluUSA

Personalised recommendations