Mechanics of Time-Dependent Materials

, Volume 4, Issue 3, pp 169–210 | Cite as

The Moisture and Rate-Dependent Mechanical Properties of Paper: A Review

  • Henry W. HaslachJr.
Article

Abstract

Paper is a complex structure of composite biological fibers.The behavior of paper is time-dependent with respect to load, moisturecontent, or temperature, whether these control parameters are fixed orvaried in combination. A key question is whether the time-dependentproperties are a consequence of the fiber micro-structure, theinterfiber bond, the fiber distribution in a sheet, or a combination ofthese. Hypotheses for the physical mechanisms responsible forstress-strain relations observed under constant, monotonic, and cyclicloading and, especially, for the role of moisture bonding in thetime-dependent behavior are compared. The moisture accelerated creepphenomenon, due to varying ambient relative humidity, is an importanttime-dependent behavior which creates practical problems such as thewall collapse of stacked cartons in warehouses with non-constanthumidity and control of the paper-making machine. For each type ofloading and ambient control variation, after a discussion of possiblephysical mechanisms inducing the observed response, the mathematicalmodels proposed in the literature are reviewed as tools for the designof both the paper-making process and applications.

back stress calendering constitutive models of paper creep moisture accelerated creep paper sorption swelling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersson, O. and Berkyto, E., 'Some factors affecting the stress-strain characteristics of paper', Svensk Papperstidning 54(13), 1951, 437-444.Google Scholar
  2. Argon, A.S., 'Delayed elasticity in inorganic glasses', Journal of Applied Physics 30(9), 1968, 4080-4086.Google Scholar
  3. Back, E.L., Salmén, L. and Richardson, G., 'Transient effects of moisture sorption on the strength properties of paper and wood-based materials', Svensk Papperstidning 86, 1983, R61-R71.Google Scholar
  4. Batten, Jr., G.L. and Nissan, A.H., 'Unified theory of the mechanical properties of paper and other H-bond dominated solids-Part I', Tappi Journal 70(9), 1987a, 119-123.Google Scholar
  5. Batten, Jr., G.L. and Nissan, A.H., 'Unified theory of the mechanical properties of paper and other H-bond dominated solids-Part III', Tappi Journal 70(11), 1987b, 137-140.Google Scholar
  6. Benson, R., 'Effects of relative humidity and temperature on tensile stress-strain properties of Kraft linerboard', Tappi 54, 1971, 699-703.Google Scholar
  7. Berger, B.J. and Habeger, C.C., 'Influences of non-equilibrium moisture conditions on the in-plane ultrasonic stiffnesses of cellulose', Journal of Pulp and Paper Science 15(5), 1989, J160-J165.Google Scholar
  8. Berger, B.J., Habeger, C.C. and Pankonin, B.M., 'The influence of moisture and temperature on the ultrasonic viscoelastic properties of cellulose', Journal of Pulp and Paper Science 15(5), 1989, J170-J177.Google Scholar
  9. Bodig, J. and Jayne, B.A., Mechanics of Wood and Wood Composites, Van Nostrand Reinhold, New York, 1982.Google Scholar
  10. Brezinski, J., 'The creep properties of paper', Tappi 39(2), 1956, 116-128.Google Scholar
  11. Broughton, G. and Matlin, N.A., 'The mechanical behavior of paper-Part I', Tappi 34(11), 1951, 493-497.Google Scholar
  12. Browne, T.C., Crotogino, R.H. and Douglas, W.J.M., 'Viscoelastic modeling of paper in a calender nip', Journal of Pulp and Paper Science 22(5), 1996, J170-J173.Google Scholar
  13. Brunauer, S., The Adsorption of Gases and Vapors, Vol. 1, Princeton University Press, Princeton, NJ, 1945.Google Scholar
  14. Byrd, V.L., 'Effect of relative humidity changes during creep on handsheet paper properties', Tappi 55(2), 1972a, 247-252.Google Scholar
  15. Byrd, V.L., 'Effect of relative humidity changes on compressive creep response of paper', Tappi 55(11), 1972b, 1612-1613.Google Scholar
  16. Byrd, V.L., 'Edgewise compression creep of fiberboard components in a cyclic-relative-humidity environment', Tappi Journal 67(7), 1984, 86-90.Google Scholar
  17. Byrd, V.L., 'Adhesives influence on edgewise compression creep in a cyclic relative humidity environment', Tappi Journal 69(10), 1986, 98-100.Google Scholar
  18. Byrd, V.L., 'Effect of cyclic moisture changes on paperboard performance in a service environment', in Proceedings of the 1988 Appita General Conference, Hobart, Tasmania, Australia, Australian and New Zealand Pulp and Paper Industry Technical Association, 1988.Google Scholar
  19. Byrd, V.L. and Koning Jr., J.W., 'Edgewise compression creep in cyclic relative humidity environments', Tappi 61(6), 1978, 35-37.Google Scholar
  20. Campbell, W.B., 'The cellulose-water relationship in papermaking', Canadian Department of the Interior Forest Bulletin 84, Forest Products Laboratory of Canada, Ottawa, 1933, 52 pages.Google Scholar
  21. Campbell, W.B., 'The surfaces of cellulose', Tappi 32(6), 1949, 265-271.Google Scholar
  22. Carlsson, L. and Salmén, L., 'Basic relations for laminated orthotropic plates', in Paper, Structure and Properties, J.A. Bristow and P. Kolseth (eds.), Marcel Dekker, New York, 1986, 369-375.Google Scholar
  23. Catsiff, E., Alfrey, T. and O'shaughnessey, M.J., 'Generated creep curves for nylon', Textile Research Journal 23, 1953, 808-820.Google Scholar
  24. Caulfield, D.F., 'Interactions at the cellulose-water interface', in Paper Science and Technology: The Cutting Edge, Institute of Paper Chemistry, Appleton, WI, 1980, 70-88.Google Scholar
  25. Caulfield, D.F., 'Dimensional stability of paper: papermaking methods and stabilization of cell walls' Wood Science Seminar, Vol. 1, O. Suchsland (ed.), December 15-16, East Lansing, MI, 1987, 87-98.Google Scholar
  26. Chatterjee, S.G., 'Comparison of domain and similarity models for characterizing moisture-sorption equilibria of paper', Preprint, 2000.Google Scholar
  27. Chatterjee, S.G., Ramarao, B.V. and Tien, C., Water-vapor sorption equilibria of a bleached-kraft paperboard-A study of the hysteresis region, Journal of Pulp and Paper Science 23(8), 1997, J366-J373.Google Scholar
  28. Chaves de Oliveira, R., Mark, R.E. and Perkins, R.W., 'Evaluation of the effects of heterogeneous structure on strain distribution in low density papers', in Mechanics ofWood and Paper Materials, AMD Vol. 112, MD Vol. 23, R. Perkins (ed.), ASME, New York, 1990, 37-61.Google Scholar
  29. Coffin, D.W. and Boese S.B., 'Tensile creep behavior of single fibers and paper in a cyclic humidity environment', in Proceedings of the 3rd International Symposium: Moisture and Creep Effects on Paper, Board and Containers, I.R. Chalmers (ed.), PAPRO, Rotorua, New Zealand, 1997, 39-52.Google Scholar
  30. Considine, J.M., Thelin, P., Gunderson, D.E. and Fellers, C., 'Compressive creep behavior of paper-board in a cyclic humidity environment-Exploratory experiment', in Mechanics of Cellulosic and Polymeric Materials, AMD Vol. 99, R.W. Perkins (ed.), ASME, New York, 1989, 149-156.Google Scholar
  31. Cousins, W.J., Armstrong, R.W. and Robinson, W.H., 'Young's modulus of lignin from a continuous indentation test', Journal of Materials Science 10, 1975, 1655-1658.Google Scholar
  32. Cox, H.L., 'The elasticity and strength of paper and other fibrous materials', British Journal of Applied Physics 3, 1952, 72-78.Google Scholar
  33. Danielson, R. and Steenberg, B., 'Quantitative determination of fiber orientation in paper', Svensk Papperstidning 50(13), 1955, 301-305.Google Scholar
  34. de Ruvo, A., Lundberg, R., Martin-Lof, S. and Soremark, C., 'Influence of temperature and humidity on the elastic and expansional properties of paper and the constituent fiber', in The Fundamental Properties of Paper Related to Its Uses, Transactions of the Symposium 1973, F. Bolam (ed.), British Paper Board Industry Federation, London, 1976, 785-806.Google Scholar
  35. Edge, S.R.H., 'Factors affecting sheet strength', Proc. Tech. Section, Paper Makers Assoc. Gt. Britain Ireland 25, 1944, 210-215.Google Scholar
  36. Edge, S.R.H., Proc. Tech. Section, Paper Makers Assoc. Gt. Britain Ireland 26, 1945, 425-431.Google Scholar
  37. Edge, S.R.H., 'Factors affecting the strength of paper', Chemistry & Industry 67(51), 1948, 803-807.Google Scholar
  38. Eyring, H., 'Viscosity, plasticity, and diffusion as examples of absolute reaction rates', Journal of Chemical Physics 4, 1936, 283-291.Google Scholar
  39. Feygin, V.B., 'Modeling paper strain in a calender nip', Tappi Journal 82(8), 1999, 183-188.Google Scholar
  40. Findley W., Lai, J. and Onaran, K., Creep and Relaxation of Nonlinear Viscoelastic Materials, North-Holland, New York, 1976.Google Scholar
  41. Freed, A.D. and Walker, K.P., 'Viscoplasticity with creep and plasticity bounds', International Journal of Plasticity 9, 1993, 213-242.Google Scholar
  42. Gibbon, E.R., 'Stress/strain curves of paper', Proc. Tech. Section, Paper Makers Assoc. Gt. Britain Ireland 25, 1944, 199-210.Google Scholar
  43. Gressel, V.P., 'A proposal for consistent experimental principles for conducting and evaluating creep tests', Holz Roh-Werkstoffe 44(4), 1986, 133-138.Google Scholar
  44. Gunderson, D.E., 'A method for compressive creep testing of paperboard', Tappi 64(11), 1981, 67-71.Google Scholar
  45. Gunderson, D.E., 'Method for measuring mechanosorptive properties', in Mechanics of Cellulosic and Polymeric Materials, AMD Vol. 99, R.W. Perkins (ed.), ASME, New York, 1989, 157-166.Google Scholar
  46. Gunderson, D.E. and Considine, J.M., 'Measuring the mechanical behavior of paperboard in a changing humidity environment', in 1986 International Process and Materials Quality Evaluation Conference, Tappi Press, Atlanta, GA, 1986, 245-251.Google Scholar
  47. Gunderson, D.E. and Tobey, W.E., 'Tensile creep of paperboard-Effect of humidity change rates', Materials Research Society, 1990 Spring Meeting, San Francisco, CA, April 18-20, 1990.Google Scholar
  48. Gunderson, D.E., Considine, J.M. and Scott, C.T., 'The compressive load-strain curve of paperboard: Rate of load and humidity effects', Journal of Pulp and Paper Science 14(2), 1988, J37-J41.Google Scholar
  49. Halsey, G., White Jr., H.J. and Eyring, H., 'Mechanical properties of textiles, I', Textile Research Journal 15(9), 1945, 295-311.Google Scholar
  50. Haraldsson, T., Fellers, C. and Kolseth, P., 'Modelling of creep behavior at constant relative humidity', in Proceedings of the Moisture-Induced Creep Behavior of Paper and Board Conference, Stockholm, Sweden, December 5-7, C. Fellers and T.L. Laufenberg (eds), STIFI, Stockholm, 1994, 139-147.Google Scholar
  51. Haslach Jr., H.W., 'The mechanics of moisture accelerated creep in paper', Tappi Journal 77(10), 1994a, 179-186.Google Scholar
  52. Haslach Jr., H.W., 'Relaxation of moisture accelerated creep and hygroexpansion', in Proceedings of the Moisture-Induced Creep Behavior of Paper and Board Conference, Stockholm, Sweden, December 5-7, C. Fellers and T.L. Laufenberg (eds), STIFI, Stockholm, 1994b, 121-138.Google Scholar
  53. Haslach Jr., H.W., 'A model for drying-induced microcompressions in paper: Buckling in the interfiber bonds', Composites 27B(1), 1996, 25-33.Google Scholar
  54. Haslach Jr., H.W., 'Relaxation of moisture accelerated creep, backstress and hygroexpansion in paper', in Mechanics of CellulosicMaterials-1997, AMD Vol. 221, MD-Vol. 77, R.W. Perkins (ed.), ASME, New York, 1997, 45-53.Google Scholar
  55. Haslach Jr., H.W. and Abdullahi, Z., 'Thermally cycled creep of paper', in Mechanics of Cellulosic Materials, AMD Vol. 209, MD Vol. 60, R.W. Perkins (ed.), ASME, New York, 1995, 13-22.Google Scholar
  56. Haslach Jr., H.W. and Wu, X., 'Mechanisms of moisture accelerated tensile creep in paper', in Mechanics of Cellulosic Materials, AMD Vol. 145, MD Vol. 36, R.W. Perkins (ed.), ASME, New York, 1992, 39-47.Google Scholar
  57. Haslach Jr., H.W. and Zeng, N.-N., 'Maximum dissipation evolution equations for nonlinear thermoviscoelasticity' International Journal of Non-linear Mechanics 34, 1999, 361-385.Google Scholar
  58. Haslach Jr., H.W., Khan, S., Mohammad, S. and Pecht, M.G., 'Behavior of Virginia fiber paper as influenced by relative humidity', in Mechanics of Cellulosic and Polymeric Materials, AMD Vol. 99, MD Vol. 13, R.W. Perkins (ed.), ASME, New York, 1989, 167-172.Google Scholar
  59. Haslach Jr., H.W., Pecht, M.G. and Wu, X., 'A viscoelastic model for variable humidity loading in creep', in Mechanics of Wood and Paper Materials, AMD Vol. 112, MD Vol. 23, R.W. Perkins (ed.), ASME, New York, 1990, 1-7.Google Scholar
  60. Haslach Jr., H.W., Pecht, M.G. and Wu, X., 'Variable humidity and load interaction in tensile creep of paper', in Proceedings of the 1991 International Paper Physics Conference, Kona, Hawaii, Tappi Press, Atlanta, GA, 1991, 219-224.Google Scholar
  61. Hermans, P.H., Physics and Chemistry of Cellulose Fibers, Elsevier, Amsterdam, 1949Google Scholar
  62. Hill, R.L., 'The creep behavior of individual pulp fibers under tensile stress', Tappi 50(8), 1967, 432-440.Google Scholar
  63. Holland, H.D., Halsey, G. and Eyring, H., 'Mechanical properties of textiles: VI. A study of creep of fibers', Textile Research Journal 16(5), 1946, 201-210.Google Scholar
  64. Htun, M., 'The control of mechanical properties by drying restraints', in Paper: Structure and Properties, J.A. Bristow and P. Kolseth (eds), Marcel Dekker, New York, 1986, 311-326.Google Scholar
  65. Huggins, M.L., 'Hydrogen bridges in organic compounds', Journal of Organic Chemistry 1, 1936, 407-456.Google Scholar
  66. Ivarsson, B., 'Paper as a viscoelastic body. IV. Mechanical conditioning of paper and interpretation of stress-strain curves', Svensk Papperstidning 51, 1948, 383-388.Google Scholar
  67. Jayne, B.A., 'Mechanical properties of wood fibers', Tappi 42(6), 1959, 461-467.Google Scholar
  68. Jentzen, C.A., 'The effect of stress applied during drying on some of the properties of individual pulp fibers', Tappi 47(7), 1964, 412-418.Google Scholar
  69. Kolseth, P. and de Ruvo, A., 'The measurement of viscoelastic behavior for the characterization of time-, temperature-, and humidity-dependent properties', in Handbook of Physical and Mechanical Testing of Paper and Paperboard, Vol. 1, R.E. Mark (ed.), Marcel Dekker, New York, 1983, 255-322.Google Scholar
  70. Kolseth, P. and de Ruvo, A., 'The cell wall components of wood pulp fibers', in Paper: Structure and Properties, J.A. Bristow and P. Kolseth (eds), Marcel Dekker, New York, 1986, 1-25.Google Scholar
  71. Kubát, J. and Lindbergson, B., 'Damping transients in polymers during sorption and desorption', Journal of Applied Polymeric Sciences 9, 1965, 2651-2654.Google Scholar
  72. Kubát, J. and Nyborg, L., 'Influence of mechanical stress on the sorption equilibrium of paper', Svensk Papperstidning 65(18), 1962, 698-702.Google Scholar
  73. Kubát, J., Nyborg, L. and Steenberg, B., 'Response of paper to low frequency sinusoidal strain', Svensk Papperstidning 66(19), 1963, 754-764.Google Scholar
  74. Lindström, T., 'The porous lamellar structure of the cell wall', in Paper: Structure and Properties, J.A. Bristow and P. Kolseth (eds), Marcel Dekker, New York, 1986, 99-120.Google Scholar
  75. Mappus, J.H., 'Fatigue resistance of extensible and conventional kraft papers', Tappi 44(3), 1961, 198A-201A.Google Scholar
  76. Mason, S.G., 'The rheology of paper; a new appraoch to the study of paper strength', Pulp and Paper Magazine Canada 49, 1948, 207-214.Google Scholar
  77. Nissan, A.H., 'The significance of hydrogen bonding at the surfaces of cellulose network structures', in Surface and Coatings Related to Paper and Wood, R.H. Marchessault and C. Skaar (eds), Syracuse University Press, Syracuse, NY, 1967, 221-268.Google Scholar
  78. Nissan, A.H., 'H-bond dissociation in hydrogen bond dominated solids', Macromolecules 9(5), 1976, 840-850.Google Scholar
  79. Nissan, A.H., 'The effects of water on Young's modulus of paper', Tappi 60(10), 1977, 98-101.Google Scholar
  80. Nissan, A.H. and Batten Jr., G.L., 'Unified theory of the mechanical properties of paper and other H-bond dominated solids-Part II', Tappi Journal 70(10), 1987, 128-131.Google Scholar
  81. Nissan, A.H. and Batten Jr., G.L., 'The link between the molecular and structural theories of paper elasticity', Tappi Journal 80(4), 1997, 153-158.Google Scholar
  82. Nissan, A.H. and Higgins, H.G., 'A molecular approach to the problem of viscoelasticity', Nature 184, 1959, 1477-1478.Google Scholar
  83. Nordman, L.S., 'Bonding in paper sheets', in Fundamentals of Papermaking Fibers, F. Bolam (ed.), British Pulp and Paper Manufacturing Ass., Kenley, 1958, 333-347.Google Scholar
  84. Nordman, L.S., Gustafsson, C. and Olofsson, G., 'Optical measurement of bond breaking during a tensile test', Tappi 38(12), 1955, 724-727.Google Scholar
  85. Padanyi, V., 'Mechano-sorptive effects and accelerated creep in paper', in 1991 International Paper Physics Conference Proceedings, Tappi Press, Atlanta, GA, 1991, 397-411.Google Scholar
  86. Padanyi, V., 'Reversible age dependence of tensile creep and stress relaxation in paperboard', in Proceedings of the Moisture-Induced Creep Behavior of Paper and Board Conference, Stockholm, Sweden, December 5-7, C. Fellers and T.L. Laufenberg (eds), STIFI, Stockholm, 1994, 67-87.Google Scholar
  87. Page, D.H., 'Discussion', in Formation and Structure of Paper, F. Bolam (ed.), Transactions of the Fundamental Research Symposium, Oxford, Technical Section of the British Paper and Board Makers' Association, London, 1962, 246-247.Google Scholar
  88. Page, D.H., 'The rheology of paper in terms of its molecular structure', Tappi 46(12), 1963, 750-756.Google Scholar
  89. Page, D.H., 'The structure and properties of paper: Part 1-The structure of paper', Trend 15, 1969, 7.Google Scholar
  90. Page, D.H., 'The structure and properties of paper: Part 2-Shrinkage, dimensional stability and stretch', Trend 18, 1971, 6-11.Google Scholar
  91. Page, D.H. and De Grace, J.H., 'The delamination of fiber walls by beating and refining', Tappi 50(10), 1967, 489-495.Google Scholar
  92. Page, D.H. and Sargent, J.W., 'The fine structure of fibre bonding', in Formation and Structure of Paper, F. Bolam (ed.), Transactions of the Fundamental Research Symposium, Oxford, Technical Section of the British Paper and Board Makers' Association, London, 1962, 195-200.Google Scholar
  93. Page, D.H. and Tydeman, P.A., 'A new theory of the shrinkage, structure and properties of paper', in Formation and Structure of Paper, F. Bolam (ed.), Transactions of the Fundamental Research Symposium, Oxford, Technical Section of the British Paper and Board Makers' Association, London, 1962, 397-413.Google Scholar
  94. Page, D.H., El-Hosseiny, E., Winkler, K. and Bain, R., 'The mechanical properties of single wood-pulp fibres. Part 1: A new approach', Pulp and Paper Magazine of Canada 83(8), 1972, T198-T203.Google Scholar
  95. Page, D.H., El-Hosseiny, E., Winkler, K. and Lancaster, A.P.S., 'Elastic modulus of single wood pulp fibers', Tappi 60(4), 1977, 114-117.Google Scholar
  96. Parker, J.L., 'The effects of ethylamine decrystallization of cellulose fibers on the viscoelastic properties of paper', Tappi 45(12), 1962, 936-943.Google Scholar
  97. Pecht, M.G., 'Creep of regain rheologically simple hydrophilic polymers', Journal of Strain Analysis 20(3), 1985, 179-181.Google Scholar
  98. Pecht, M.G. and Haslach Jr., H.W., 'A viscoelastic model for constant rate loading at different relative humidities', Mechanics of Materials 11, 1991, 337-345.Google Scholar
  99. Pecht, M.G. and Johnson, M., 'The strain response of paper under various constant regain states', Tappi Journal 68(1), 1985, 90-93.Google Scholar
  100. Pecht, M.G., Johnson, M. and Rowlands, R., 'Constitutive equations for the creep of paper', Tappi 67, 1984, 106-108.Google Scholar
  101. Perkins, R.W., 'Fiber networks: Models for predicting the mechanical behavior of paper', in Encyclopedia of Material Sciences and Engineering, M.E. Bever (ed.), Pergamon Press, Oxford, 1986, 1712-1719.Google Scholar
  102. Perkins, R.W. and Ramasubramanian, M.K., 'Concerning micromechanics models for the elastic behavior or paper', in Mechanics of Cellulosic and Polymeric Materials, AMD Vol. 99, R.W. Perkins (ed.), ASME, New York, 1989, 23-33.Google Scholar
  103. Perkins, R.W., Sinha, S. and Mark, R.E., 'Micromechanics and continuum models for paper materials of medium to high density', 1991 International Paper Physics Conference Proceedings, Tappi Press, Atlanta, GA, 1991, 413-435.Google Scholar
  104. Rance, H.F., Proc. Tech. Section, Paper Makers Assoc. Gt. Britain Ireland 29, 1948, 449-469.Google Scholar
  105. Riemen, W.P. and Kurath, S.F., 'The dynamical mechanical properties of paper', Tappi 47(10), 1964, 629-633.Google Scholar
  106. Saliklis, E.P. and Kuskowski, S.J., 'Constitutive modeling of paper acounting for rate of load and transient relative humidity effects', Tappi Journal 81(2), 1998, 181-188.Google Scholar
  107. Salmén, N.L., 'The cell wall as a composite structure', in Paper: Structure and Properties, J.A. Bristow and P. Kolseth (eds), Marcel Dekker, New York, 1986, 51-73.Google Scholar
  108. Salmén, N.L. and Back, E.L., 'Effect of temperature on stress-strain properties of dry papers', Svensk Papperstidning 81, 1978, 341-346.Google Scholar
  109. Salmén, N.L. and Back, E.L., 'Moisture-dependent thermal softening of paper, evaluated by its elastic modulus', Tappi 63(6), 1980, 117-120.Google Scholar
  110. Salmén, L. and Fellers, C., 'Moisture induced transients and creep of paper and nylon 6,6; A comparison', Nordic Pulp and Paper Research Journal 11(3), 1996, 186-191.Google Scholar
  111. Salmén, L., Carlsson, L., de Ruvo, A., Fellers, C. and Htun, M., 'A treatise on the elastic and hygroexpansional properties of paper by a composite laminate approach', Fibre Science and Technology 20, 1984, 281-296.Google Scholar
  112. Sanborn, I.B., 'A study of irreversible, stress-induced changes in the macrostructure of paper', Tappi 45(6), 1962, 465-474.Google Scholar
  113. Schulz, J.H., 'The effect of straining during drying on the mechanical and viscoelastic behavior of paper', Tappi 44(10), 1961, 736-744.Google Scholar
  114. Sedlachek, K.M., 'The effect of hemicelluloses and cyclic humidity on the creep of single fibers', Ph.D. Thesis, Institute of Paper Science and Technology, Atlanta, GA, 1995.Google Scholar
  115. Setterholm, V.C. and Chilson, W.A., 'Drying restraint', Tappi 48(11), 1965, 634-640.Google Scholar
  116. Shaver, C.A., 'Parameters affecting the supercalenders ability to keep up with the paper machine', Tappi Journal 73(11), 1990, 149-155.Google Scholar
  117. Skogman, R.T. and Scheie, C.E., 'The effect of temperature on the moisture adsorption of Kraft paper', Tappi 52(3), 1969, 489-490.Google Scholar
  118. Smook, G.A., Handbook for Pulp & Paper Technologists, Tappi Press, Atlanta, GA, 1982.Google Scholar
  119. Söremark, C. and Fellers, C.N., 'Mechano-sorptive creep and hygroexpansion of corrugated board in bending', in 1991 International Paper Physics Conference Proceedings, Tappi Press, Atlanta, GA, 1991, 549-559.Google Scholar
  120. Söremark, C. and Fellers, C.N., 'Mechano-sorptive creep and hygroexpansion of corrugated board in bending', Journal of Pulp and Paper Science 19(1), 1993, J19-J26.Google Scholar
  121. Söremark, C., Fellers, C.N. and Henriksson, L., 'Mechano-sorptive creep of paper-Influence of drying restraint and fibre orientation', in Products of Papermaking: Transactions of the Tenth Fundamental Research Symposium, Oxford, September 1993, Vol. 1, C.F. Baker (ed.), PIRA International, Leatherhead, Surrey, U.K., 1993, 547-574.Google Scholar
  122. Stamm, A.J., 'Adsorption in swelling versus non-swelling systems', Tappi 40, 1957, 761-770.Google Scholar
  123. Steenberg, B., Svensk Papperstidning 50, 1947, 346-350.Google Scholar
  124. Sternstein, S.S. and Nissan, A.H., 'A molecular theory of the visco-elasticity of a three-dimensional hydrogen bonded network', in Formation and Structure of Paper, F. Bolam (ed.), Transactions of the Fundamental Research Symposium, Oxford, Technical Section of the British Paper and Board Makers' Association, London, 1962, 319-348.Google Scholar
  125. Subramanian, L. and Carlsson, L., 'Influence of voids on the engineering constants of paper. Part 1: Continuum modeling', Tappi Journal 77(11), 1994a, 201-216.Google Scholar
  126. Subramanian, L. and Carlsson, L., 'Influence of voids on the engineering constants of paper. Part 2: Void modeling', Tappi Journal 77(12), 1994b, 85-94.Google Scholar
  127. Tydeman, P.A., 'Discussion', in Formation and Structure of Paper, F. Bolam (ed.), Transactions of the Fundamental Research Symposium, Oxford, Technical Section of the British Paper and Board Makers' Association, London, 1962, 273-274.Google Scholar
  128. Uesaka, T. and Qi, D., 'Hygroexpansivity of paper-Effects of fibre-to-fibre bonding', Journal of Pulp and Paper Science 20(6), 1994, J175-J 179.Google Scholar
  129. Uesaka, T., Murakami, K. and Imamura, R., 'Two-dimensional linear viscoelasticity of paper', Wood Science and Technology 14, 1980, 131-142.Google Scholar
  130. Uesaka, T., Moss, C. and Nanri, Y., 'The characterization of hygroexpansivity in paper', in 1991 International Paper Physics Conference Proceedings, Tappi Press, Atlanta, GA, 1991, 613-622.Google Scholar
  131. Urbanik, T.J., 'Hygroexpansion-creep model for corrugated fiberboard', Wood and Fiber Science 27, 1995, 134-140.Google Scholar
  132. Urbanik, T.J. and Lee, S.K., 'Swept sine humidity schedule for testing cycle period effects on creep', Wood and Fiber Science 27, 1995, 68-78.Google Scholar
  133. Van den Akker, J.A., 'The elastic and rheological properties of papermaking fibers', Tappi 33(8), 1950, 398-402.Google Scholar
  134. Van den Akker, J.A., 'A note on the theory of fiber-fiber bonding in paper; The influence on paper strength of drying by sublimination', Tappi 35(1), 1952, 13-15.Google Scholar
  135. Van den Akker, J.A., 'Some theoretical considerations on the mechanical properties of fibrous structures', in Formation and Structure of Paper, F. Bolam (ed.), Transactions of the Fundamental Research Symposium, Oxford, Technical Section of the British Paper and Board Makers' Association, London, 1962, 205-241.Google Scholar
  136. Van den Akker, J.A., 'An analysis of the Nordman 'bonding strength”, Tappi 52(12), 1969, 2386-2389.Google Scholar
  137. Van den Akker, J.A., 'Structure and tensile characteristics of paper', Tappi 53(3), 1970, 388-400.Google Scholar
  138. Van den Akker, J.A., Lathrop, A.L., Voelker, M.H. and Dearth, L.R., 'Importance of fiber strength to sheet strength', Tappi 41(8), 1958, 416-425.Google Scholar
  139. Wang, H.H., Hunt, K. and Wearing, J.T., 'Residual lignin distribution in bleached kraft fibers', Journal of Pulp and Paper Science 25(2), 2000, 76-81.Google Scholar
  140. Wang, J.Z., Dillard, D.A., Wolcott, M.P., Kamke, F.A. and Wilkes, G.L., 'Transient moisture effects in fibers and composite materials', Journal of Composite Materials 24, 1990, 994-1009.Google Scholar
  141. Wild, P.M., Provan, J.W., Guin, R. and Sorin, P., 'The effects of cyclic axial loading of single wood pulp fibers at elevated temperature and humidity', Tappi Journal 82(4), 1999, 209-215.Google Scholar
  142. Wink, W.A., 'The effect of relative humidity and temperature on paper properties', Tappi 44, 1961, 171A-178A.Google Scholar
  143. Zauscher, S., Caulfield, D.F. and Nissan, A., 'The influence of water on the elastic modulus of paper Part 1: Extension of the H-bond theory', Tappi Journal 79(12), 1996, 178-182.Google Scholar
  144. Zauscher, S., Caulfield, D.F. and Nissan, A., 'The influence of water on the elastic modulus of paper Part 2: Verification of predictions of the H-bond theory', Tappi Journal 80(1), 1997, 214-223.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Henry W. HaslachJr.
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of Maryland-College ParkCollege ParkU.S.A.

Personalised recommendations