Advertisement

Pole Dynamics for Elliptic Solutions of the Korteweg-deVries Equation

  • Bernard Deconinck
  • Harvey Segur
Article

Abstract

The real, nonsingular elliptic solutions of the Korteweg-de Vries equation are studied through the time dynamics of their poles in the complex plane. The dynamics of these poles is governed by a dynamical system with a constraint. This constraint is solvable for any finite number of poles located in the fundamental domain of the elliptic function, often in many different ways. Special consideration is given to those elliptic solutions that have a real nonsingular soliton limit.

KdV equation elliptic finite gap solutions pole dynamics Calogero-Moser 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ablowitz, M. J. and Segur, H.: Solitons and the Inverse Scattering Transform, SIAM, Philadelphia, PA, 1981.Google Scholar
  2. 2.
    Airault, H., McKean, H. P., and Moser, J.: Rational and elliptic solutions of the Korteweg-de Vries equation and a related many-body problem, Comm. Pure Appl. Math. 30(1) (1977), 95–148.MATHMathSciNetADSGoogle Scholar
  3. 3.
    Belokolos, E. D., Bobenko, A. I., Enol'skii, V. Z., Its, A. R., and Matveev, V. B.: Algebro-Geometric Approach to Nonlinear Integrable Problems, Springer Ser. Nonlinear Dynam., Springer-Verlag, Berlin, 1994.Google Scholar
  4. 4.
    Chudnovs'ki, D. V. and Chudnovs'ki, G. V.: Pole expansions of nonlinear partial differentialequations, Nuovo Cimento B (11) 40(2) (1977), 339–353.MathSciNetGoogle Scholar
  5. 5.
    Conway, J. B.: Functions of One Complex Variable, 2nd edn,Springer-Verlag, New York, 1978.Google Scholar
  6. 6.
    Dubrovin, B. A.: Theta functions and nonlinear equations, Russian Math. Surveys 36(2) (1981), 11–80.MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Dubrovin, B. A. and Novikov, S. P.: Periodic and conditionally periodic analogs of the manysolitonsolutions of the Korteweg-de Vries equation, Soviet Phys. JETP 40 (1975), 1058–1063.MathSciNetADSGoogle Scholar
  8. 8.
    Ènols'kii, V. Z.: On solutions in elliptic functions of integrable nonlinear equations associatedwith two-zone Lamé potentials, Soviet Math. Dokl. 30 (1984), 394–397.Google Scholar
  9. 9.
    Gardner, C. S., Greene, J. M., Kruskal, M. D., and Miura, R. M.: Method for solving theKorteweg-de Vries equation, Phys. Rev. Lett. 19 (1967), 1095–1097.Google Scholar
  10. 10.
    Gesztesy, F. and Weikard, R.: On Picard potentials, Differential Integral Equations 8(6) (1995), 1453–1476.MATHMathSciNetGoogle Scholar
  11. 11.
    Gesztesy, F. and Weikard, R.: Picard potentials and Hill's equation on a torus, Acta Math. 176(1) (1996), 73–107.MATHMathSciNetGoogle Scholar
  12. 12.
    Gradshteyn, I. S. and Ryzhik, I. M.: Table of Integrals, Series, and Products, 5th edn, Translation edited and with a preface by Alan Jeffrey, Academic Press, Boston, MA, 1994.Google Scholar
  13. 13.
    Ince, E. L.: Further investigations into the periodic Lamé functions, Proc. Roy. Soc. Edinburgh 60 (1940), 83–99.MATHMathSciNetGoogle Scholar
  14. 14.
    Its, A. R. and Matveev, V. B.: Schrödinger operators with the finite-band spectrum and the N soliton solutions of the Korteweg-de Vries equation, Theoret. and Math. Phys. 23(1) (1976),343–355.MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kruskal, M. D.: The Korteweg-de Vries equation and related evolution equations, Lectures in Appl. Math. 15, Amer. Math. Soc. Providence, 1974, pp. 61-83.Google Scholar
  16. 16.
    Lax, P. D.: Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math. 21 (1968), 467–490.MATHMathSciNetGoogle Scholar
  17. 17.
    Thickstun, W. R.: A system of particles equivalent to solitons, J. Math. Anal. Appl. 55(2) (1976), 335–346.MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Treibich, A. and Verdier, J.-L.: Revêtements tangentiels et sommes de 4 nombres triangulaires, C.R. Acad. Sci. Paris Sér. I Math. 311(1) (1990), 51–54.MATHMathSciNetGoogle Scholar
  19. 19.
    Treibich, A. and Verdier, J.-L.: Solitons elliptiques, In: The Grothendieck Festschrift, Vol. III, With an appendix by J. Oesterlé, Birkhäuser, Boston, 1990, pp. 437–480.Google Scholar
  20. 20.
    Treibich, A. and Verdier, J.-L.: Revêtements exceptionnels et sommes de 4 nombres triangulaires, Duke Math. J. 68(2) (1992), 217–236.MATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Verdier, J.-L.: New elliptic solitons, In: Algebraic Analysis, Vol. II, Academic Press, Boston, MA, 1988, pp. 901–910.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Bernard Deconinck
    • 1
  • Harvey Segur
    • 2
  1. 1.Department of Applied MathematicsUniversity of WashingtonSeattleU.S.A.
  2. 2.Department of Applied MathematicsUniversity of ColoradoBoulderU.S.A.

Personalised recommendations