Advertisement

Multibody System Dynamics

, Volume 4, Issue 2–3, pp 129–193 | Cite as

On Representations and Parameterizations of Motion

  • Marco Borri
  • Lorenzo Trainelli
  • Carlo L. Bottasso
Article

Abstract

This work presents a complete formulation of the representationand parameterization of frame motion as a tool to derive, in aconvenient form, the kinematic and dynamic governing equations ofmechanical systems characterized by both position and orientationfields. Typical applications are rigid bodies, beams, shells, andmultibody systems. The description of such systems may be performedusing compact 4-D and 6-D matrix representations, leading to theextension of many of the well-known concepts and properties of rotationsto the group of rigid displacements. Two parameterization procedures arefully developed in connection to the proposed representations: theexponential map of motion and Cayley's parameterization. Both allow fora consistent, unified treatment of the coupled linear and angularcomponents of motion. This approach entails remarkable algorithmicimplications.

exponential map Cayley's transform rigid and elastic body motion rotations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bottasso, C.L. and Borri, M., ‘Integrating finite rotations’, Comput. Methods Appl. Mech. Engrg., 164, 1998, 307-331.Google Scholar
  2. 2.
    Bottasso, C.L. and Borri, M., ‘Energy preserving/decaying schemes for non-linear beam dynamics using the helicoidal approximation’, Comput. Methods Appl. Mech. Engrg. 143, 1997, 393-415.Google Scholar
  3. 3.
    Borri, M. and Bottasso, C.L., ‘An intrinsic beam model based on a helicoidal approximation-Part I: Formulation’, Int. J. Numer. Methods Engrg. 37, 1994, 2267-2289.Google Scholar
  4. 4.
    Borri, M. and Bottasso, C.L., ‘An intrinsic beam model based on a helicoidal approximation-Part II: Linearization and finite element implementation’, Internat. J. Numer. Methods Engrg. 37, 1994, 2291-2309.Google Scholar
  5. 5.
    Borri, M. and Bottasso, C.L., ‘The exponential map of motion-Theory and applications’, in Proceedings of the 4thWorld Congress on Computational Mechanics, Buenos Aires, Argentina, June 29-July 2, 1998 (CD-ROM).Google Scholar
  6. 6.
    Borri, M., Bottasso, C.L. and Trainelli, L., ‘Integrating elastic multibody systems: Manifolds, invariants, and non-linear stability’, in Proceedings of the 4th World Congress on Computational Mechanics, Buenos Aires, Argentina, June 29-July 2, 1998 (CD-ROM).Google Scholar
  7. 7.
    Borri, M., Bottasso, C.L. and Trainelli, L., ‘Integration of elastic multibody systems by invariant conserving/dissipating algorithms-Part I: Formulation’, Methods Appl. Mech. Engrg., submitted.Google Scholar
  8. 8.
    Borri, M., Bottasso, C.L. and Trainelli, L., ‘Integration of elastic multibody systems by invariant conserving/dissipating algorithms-Part II: Numerical schemes and applications’, Methods Appl. Mech. Engrg., submitted.Google Scholar
  9. 9.
    Bauchau, O.A. and Bottasso, C.L., ‘On the design of energy preserving and decaying schemes for flexible non-linear multi-body systems’, Internat. J. Numer. Methods Engrg. 38, 1995, 2727-2751.Google Scholar
  10. 10.
    Struelpenagel, J., ‘On the parameterization of the three-dimensional rotation group’, SIAM Rev. 6(4), 1964, 422-430.Google Scholar
  11. 11.
    Argyris, J., An excursion into large rotations, Comput. Methods Appl. Mech. Engrg. 32, 1982, 85-155.Google Scholar
  12. 12.
    Cardona, A., ‘An integrated approach to mechanism analysis’, Ph.D. Thesis, Université de Liège, Faculté des Sciences Appliquées, Liege, Belgium, 1989.Google Scholar
  13. 13.
    Cardona, A. and Geradin, M., ‘A beam finite element non-linear theory with finite rotations’, Internat. J. Numer. Methods Engrg. 26, 1988, 2403-2438.Google Scholar
  14. 14.
    Wehage, R.A. and Belczynski, M.J., ‘Constrained multibody dynamics’, in Computer-Aided Analysis of Rigid and Flexible Mechanical Systems, M.F.O. Seabra Pereira and J.A.C. Ambrosio (eds), Kluwer Academic Publishers, Dordrecht, 1993, 3-29.Google Scholar
  15. 15.
    Ibrahimbegovic, A., ‘On the choice of finite rotation parameters’, Comput. Methods Appl. Mech. Eng. 149, 1997, 49-71.Google Scholar
  16. 16.
    Angeles, J., ‘On twist and wrench generators and annihilators’, in Computer-Aided Analysis of Rigid and Flexible Mechanical Systems, M.F.O. Seabra Pereira and J.A.C. Ambrosio (eds), (Kluwer Academic Publishers, Dordrecht, 1993, 379-411.Google Scholar
  17. 17.
    Ambrosio, J.A.C., ‘Flexibility in multibody dynamics with applications to crashworthiness’, in Computer-Aided Analysis of Rigid and Flexible Mechanical Systems, M.F.O. Seabra Pereira and J.A.C. Ambrosio (eds), (Kluwer Academic Publishers, Dordrecht, 1993, 199-232.Google Scholar
  18. 18.
    Ball, R.S., ‘The theory of screws. A geometrical study of the kinematics, equilibrium, and small oscillations of a rigid body’, Trans. Royal Irish Acad. 25, 1995, 157-215.Google Scholar
  19. 19.
    Bianchi, G. and Schiehlen,W., Dynamics of Multibody Systems, Springer-Verlag, Berlin, 1985.Google Scholar
  20. 20.
    Mizzi, J.P., ‘La modélisation mécanique: utilisation de la géométrie différentielle et du calcul formel’, Rapport INRETS, No. 194, 1995.Google Scholar
  21. 21.
    Arnold, V.I., Mathematical Methods of Classical Mechanics Springer-Verlag, Berlin, 1978.Google Scholar
  22. 22.
    Hestenes, D., New Foundations for Classical Mechanics, Reidel, Dordrecht, 1986.Google Scholar
  23. 23.
    Levi-Civita, T. and Amaldi, U., Lezioni di Meccanica Razionale, Vols. I and II, Zanichelli, Bologna, 1986.Google Scholar
  24. 24.
    Spivak, M., A Comprehensive Introduction to Differential Geometry, Publish or Perish, Houston, 1979.Google Scholar
  25. 25.
    Abraham, R. and Marsden, J.E., Foundations of Mechanics, Wiley, New York, 1986.Google Scholar
  26. 26.
    Marsden, J.E. and Hughes, T.J.R., Mathematical Foundations of Elasticity, Prentice Hall, Englewood Cliffs, NJ, 1983.Google Scholar
  27. 27.
    Murray, R.M., Li, Z. and Sastry, S.S., A Mathematical Introduction to Robotic Manipulation, CRC Press, Boca Raton, FL, 1994.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Marco Borri
    • 1
  • Lorenzo Trainelli
    • 1
  • Carlo L. Bottasso
    • 1
  1. 1.Dipartimento di Ingegneria AerospazialePolitecnico di MilanoMilanItaly

Personalised recommendations